Local Characterization of a Maximum Set of Digital (26,6)-Surfaces

  • Jose C. Ciria
  • Angel de Miguel
  • Eladio Domínguez
  • Angel R. Francés
  • Antonio Quintero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


This paper provides a local characterization for a set of digital surfaces S U defined in [6] by mean of continuous analogues. For this, we firstly identify the set of admisible plates for any surface SS U (i.e., the intersection SC of S with a unit cube C of ℤ3 ). Then, the characterization is given in terms of a graph representing the intersection of plates. In addition, we establish a further condition that detects the digital surfaces in S U which are strongly separating objects.

The family S U consists of all objects which are a digital surface in some homogeneous (26,6)-connected digital space in the sense of [3]. Moreover, the subset of strongly separating surfaces of S U contains the family of simplicity 26-surfaces and other surfaces in literature as well.


Digital Object Unit Cube Adjacency Pair Digital Space Polyhedral Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: DGCI 1997. LNCS, vol. 1347, pp. 139–150. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: A Digital Index Theorem. Int. J. Patter Recog. Art. Intell. 15(7), 1–22 (2001)Google Scholar
  3. 3.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Weak Lighting Functions and Strong 26-surfaces. Theoretical Computer Science 283, 29–66 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertrand, G., Malgouyres, R.: Some Topological Properties of Surfaces in ℤ3. Jour. of Mathematical Imaging and Vision 11, 207–221 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ciria, J.C., Domínguez, E., Francés, A.R.: Separation theorems for simplicity 26-surfaces. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 45–56. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Ciria, J.C., De Miguel, A., Domínguez, E., Francés, A.R., Quintero, A.: A maximum set of (26,6)-connected digital surfaces. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 291–306. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Couprie, M., Bertrand, G.: Simplicity Surfaces: a new definition of surfaces in ℤ3. In: SPIE Vision Geometry, vol. 3454, pp. 40–51 (1998)Google Scholar
  8. 8.
    Kong, T.Y., Roscoe, A.W.: Continuous Analogs of Axiomatized Digital Surfaces. Comput. Vision Graph. Image Process 29, 60–86 (1985)CrossRefGoogle Scholar
  9. 9.
    Malandain, G., Bertrand, G., Ayache, N.: Topological Segmentation of Discrete Surfaces. Int. Jour. of Computer Vision 10(2), 183–197 (1993)CrossRefGoogle Scholar
  10. 10.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three–dimensional Digital Images. Inform. Control. 51, 227–247 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Ergebnisse der Math. 69 (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jose C. Ciria
    • 1
  • Angel de Miguel
    • 1
  • Eladio Domínguez
    • 1
  • Angel R. Francés
    • 1
  • Antonio Quintero
    • 2
  1. 1.Dpt. de Informática e Ingeniería de Sistemas, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.Dpt. de Geometría y Topología, Facultad de MatemáticasUniversidad de Sevilla, Apto. 1160SevillaSpain

Personalised recommendations