Local Characterization of a Maximum Set of Digital (26,6)-Surfaces
Abstract
This paper provides a local characterization for a set of digital surfaces S U defined in [6] by mean of continuous analogues. For this, we firstly identify the set of admisible plates for any surface S ∈ S U (i.e., the intersection S ∩ C of S with a unit cube C of ℤ3 ). Then, the characterization is given in terms of a graph representing the intersection of plates. In addition, we establish a further condition that detects the digital surfaces in S U which are strongly separating objects.
The family S U consists of all objects which are a digital surface in some homogeneous (26,6)-connected digital space in the sense of [3]. Moreover, the subset of strongly separating surfaces of S U contains the family of simplicity 26-surfaces and other surfaces in literature as well.
Keywords
Digital Object Unit Cube Adjacency Pair Digital Space Polyhedral ComplexReferences
- 1.Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: DGCI 1997. LNCS, vol. 1347, pp. 139–150. Springer, Heidelberg (1997)Google Scholar
- 2.Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: A Digital Index Theorem. Int. J. Patter Recog. Art. Intell. 15(7), 1–22 (2001)Google Scholar
- 3.Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Weak Lighting Functions and Strong 26-surfaces. Theoretical Computer Science 283, 29–66 (2002)MATHCrossRefMathSciNetGoogle Scholar
- 4.Bertrand, G., Malgouyres, R.: Some Topological Properties of Surfaces in ℤ3. Jour. of Mathematical Imaging and Vision 11, 207–221 (1999)MATHCrossRefMathSciNetGoogle Scholar
- 5.Ciria, J.C., Domínguez, E., Francés, A.R.: Separation theorems for simplicity 26-surfaces. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 45–56. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 6.Ciria, J.C., De Miguel, A., Domínguez, E., Francés, A.R., Quintero, A.: A maximum set of (26,6)-connected digital surfaces. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 291–306. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 7.Couprie, M., Bertrand, G.: Simplicity Surfaces: a new definition of surfaces in ℤ3. In: SPIE Vision Geometry, vol. 3454, pp. 40–51 (1998)Google Scholar
- 8.Kong, T.Y., Roscoe, A.W.: Continuous Analogs of Axiomatized Digital Surfaces. Comput. Vision Graph. Image Process 29, 60–86 (1985)CrossRefGoogle Scholar
- 9.Malandain, G., Bertrand, G., Ayache, N.: Topological Segmentation of Discrete Surfaces. Int. Jour. of Computer Vision 10(2), 183–197 (1993)CrossRefGoogle Scholar
- 10.Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three–dimensional Digital Images. Inform. Control. 51, 227–247 (1981)MATHCrossRefMathSciNetGoogle Scholar
- 11.Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Ergebnisse der Math. 69 (1972)Google Scholar