Skip to main content

Carbon in Boreal Peatlands

  • Chapter
Boreal Peatland Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 188))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alm J, Talanov A, Saarnio S, Silvola J, Ikkonen E, Aaltonen H, Nykänen H, Martikainen PJ (1997) Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110:423–431

    Google Scholar 

  • Alm J, Saarnio S, Nykänen H, Silvola J, Martikainen PJ (1999a) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163–186

    Google Scholar 

  • Alm J, Schulman, L, Walden, J, Nykänen H, Martikainen PJ, Silvola J (1999b) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–177

    Google Scholar 

  • Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic-soil wetlands of the temperate zone. J Ecol 74:755–774

    CAS  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358.

    CAS  Google Scholar 

  • Aurela M, Tuovinen J-P, Laurila T (1998) Carbon dioxide exchange in a subarctic peatland ecosystem in northern Europe measured by eddy covariance technique. J Geophys Res 103:11289–11301

    CAS  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2001) Seasonal CO2 balances of a subarctic mire. J Geophys Res 106:1623–1637

    CAS  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res 107. DOI 10.1029/2002JD002055

    Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31:L16119. DOI 10.1029/2004GL020315

    Google Scholar 

  • Avery GB Jr, Shannon RD, White JR, Martens CS, Alperin MJ (1999) Effect of seasonal change in the pathway of methanogenesis on the δ13C values of pore water methane in a Michigan peatland. Global Biogeochem. Cycles 6:271–291

    Google Scholar 

  • Baird A, Beckwith CW, Waldron, S, Waddington JM (2004) Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat. Geophys Res Lett 31:L21505. DOI 10.1029/2004GL021157

    Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–492

    Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    CAS  Google Scholar 

  • Bartsch I, Moore TR (1985) A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Québec. Can J Bot 63:1241–1248

    Google Scholar 

  • Bauer IE, Gignac D, Vitt DH (2003) Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Can J Bot 81:833–847

    Google Scholar 

  • Bellisario L, Moore TM, Bubier JL (1998) Net ecosystem exchange in a boreal peatland, northern Manitoba. Écoscience 5:534–541

    Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999). Controls on CH4 emissions from a northern peatland. Global Biogeochem Cycles 9:455–470

    Google Scholar 

  • Belyea, LR Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biol 10:1043–1052

    Google Scholar 

  • Bergman I, Svensson BH, Nilsson M (1998) Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol Biochem 30:729–741

    CAS  Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands — a review of processes and controls. Environ Rev 10:111–134

    CAS  Google Scholar 

  • Borren W, Bleuten W, Lapshina ED (2004) Holocene peat and carbon accumulation rates in the southern taiga of Western Siberia. Quat Res 61:42–51

    CAS  Google Scholar 

  • Bosse U, Frenzel P (2001) CH4 emissions from a West Siberian mire. Suo 52:99–114

    Google Scholar 

  • Botch M, Kobak KI, Vinson TS, Kolchugina TP (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biochem Cycles 9:37–46

    CAS  Google Scholar 

  • Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationships to inter-system C and N fluxes. Oecologia 110:403–413

    Google Scholar 

  • Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J Ecol 83:403–420

    Google Scholar 

  • Bubier JL, Moore TR (1994) An ecological perspective on methane emissions from northern wetlands. Trends Ecol Evol 9:460–464

    Google Scholar 

  • Bubier JL, Costello LA, Moore TR, Roulet NT, Savage K (1993a) Microtopography and methane flux in boreal peatlands, northern Ontario, Canada. Can J Bot 71:1056–1063

    Google Scholar 

  • Bubier JL, Moore TR, Roulet NT (1993b) Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology 74:2240–2254

    Google Scholar 

  • Bubier JL, Moore TR, Bellisario L, Corner NT, Crill PM (1995a) Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochem Cycles 9:455–470

    CAS  Google Scholar 

  • Bubier JL, Moore TR, Juggins S (1995b) Predicting methane emission from bryophyte distribution in northern Canadian peatlands. Ecology 76:677–693

    Google Scholar 

  • Bubier JL, Crill PM, Moore TR, Savage K, Varner R (1998) Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochem Cycles 12:703–714

    CAS  Google Scholar 

  • Bubier JL, Frolking S. Crill PM, Linder E (1999) Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J Geophys Res 104:27683–27692

    CAS  Google Scholar 

  • Bubier JL, Bhatia G, Moore TR, Roulet NT, Lafleur PM (2003a) Between year and site variability in growing season net ecosystem CO2 exchange at a large peatland, Ontario, Canada. Ecosystems 6:353–367

    CAS  Google Scholar 

  • Bubier J, Crill P, Mosedale A, Frolking S (2003b) Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Global Biogeochem Cycles 17:1066. DOI 10.1029/2002GB001946

    Google Scholar 

  • Buringh P (1984) Organic carbon in soils of the world. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle, SCOPE 23. Wiley, New York, pp 91–109

    Google Scholar 

  • Carroll P, Crill PM (1997) Carbon balance of a temperate poor fen. Global Biogeochem Cycles 11:349–356

    CAS  Google Scholar 

  • Chanton JP, Whiting GJ, Showers WJ, Crill PM (1992a) Methane flux from Peltandra virginica: stable isotope tracing and chamber effects. Global Biogeochem Cycles 6:15–31

    CAS  Google Scholar 

  • Chanton JP, Martens CS, Kelley CA, Crill PM, Showers WJ (1992b) Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake. J Geophys Res 97:16681–16888

    CAS  Google Scholar 

  • Chanton JP, Whiting GJ, Happell JD, Gerard G (1993) Contrasting rates and diurnal patterns of methane emissions from emergent aquatic macrophytes. Aquat Bot 46:111–128

    CAS  Google Scholar 

  • Chanton JP, Bauer J, Glaser P, Tyler SC, Ramonowitz E, Siegel D, Kelley C, Lazrus A (1995) Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatland. Geochim Cosmochim Acta 59:3773–3668

    Google Scholar 

  • Chapin FS III, Matson PA, Mooney H (2002) Principles of terrestrial ecosystem ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Chapman SJ, Thurlow M (1998) Peat respiration at low temperatures. Soil Biol Biochem 30:1013–1021

    CAS  Google Scholar 

  • Charman D (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  • Charman D, Aravena R, Warner BD (1994) Carbon dynamics in a forested peatland in north-eastern Ontario, Canada. J Ecol 82:55–62

    Google Scholar 

  • Chasar LS, Chanton JP, Glaser PH, Siegel DI, Rivers JS (2000) Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. Global Biogeochem Cycles 14:1095–1108

    CAS  Google Scholar 

  • Chimner RA, Cooper DJ (2003) Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:435–351

    Google Scholar 

  • Christensen TR (1993) Methane emission from Arctic tundra. Biogeochemistry 21:117–139

    CAS  Google Scholar 

  • Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S (2000) Trace gas exchange in a high-arctic valley, 1. Variations in CO2 and CH4 flux between tundra vegetation types. Global Biogeochem Cycles 14:701–714

    CAS  Google Scholar 

  • Christensen TR, Panikov N, Mastepanov M, Joabsson A, Stewart A, Öquist M, Sommerkorn M, Reynaud S, Svensson B (2003) Biotic controls on CO2 and CH4 exchange in wetlands — a closed environment study. Biogeochemistry 64:337–354

    CAS  Google Scholar 

  • Christensen TR, Friborg T, Ã…kerman HP, Mastepanov M (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31:L04501. DOI 10.1029/2003GL018680

    Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327

    CAS  Google Scholar 

  • Clymo RS (1984) The limits to peat growth. Philos Trans R Soc, Lond Ser B 303:605–654

    Google Scholar 

  • Clymo RS (1992) Models of peat growth. Suo 43:173–182

    Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Google Scholar 

  • Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae, MO, Schimel, DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 39–58

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Crill P (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochem Cycles 5:319–334

    CAS  Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DL, Madzar L, Sanner W (1988) Methane flux from Minnesota peatlands. Global Biogeochem Cycles 2:371–384

    CAS  Google Scholar 

  • Crill P, Hargreaves K, Korhola A (2000) The role of peat in Finnish greenhouse gas balances. Ministry of Trade and Industry, studies and reports 10/2000, Helsinki, Finland

    Google Scholar 

  • Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19

    Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155/156:1–20

    Google Scholar 

  • DeVito KJ, LaZerte BD (1989) Phosphorus and nitrogen retention in five Precambrian shield wetlands. Biogeochemistry 8:185–204

    CAS  Google Scholar 

  • Dise NB (1993) Methane emission from Minnesota peatlands: spatial and seasonal variability. Global Biogeochem Cycles 7:123–142

    Google Scholar 

  • Dise NB, Gorham E, Verry ES (1993) Environmental factors controlling methane emissions from peatlands in northern Minnesota. J Geophys Res 98:10583–10594

    Google Scholar 

  • Domisch T, Finér L, Karsisto M, Laiho R, Laine J (1998) Relocation of carbon from decaying litter in drained peat soils. Soil Biol Biochem 30:1529–1536

    CAS  Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326

    CAS  Google Scholar 

  • Eilrich B, Steinmann P (2003) Acetate in deep peat bog environments — Seasonal variation and implications for methanogenesis: investigation of an ombrotrophic peat bog in the Jura Mountains, Switzerland. Z Dtsch Geol Ges 153:145–157

    Google Scholar 

  • Fahnestock JT, Jones MH, Welker JM (1999) Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Global Biogeochem Cycles 13:775–779

    CAS  Google Scholar 

  • Feng X (2002) A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Global Biogeochem Cycles 16:1119. DOI 10.1029/2002GB001867

    Google Scholar 

  • Ferguson TJ, Mah RA (1983) Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl Environ Microbiol 46:348–355

    PubMed  CAS  Google Scholar 

  • Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66:4790–4797

    PubMed  CAS  Google Scholar 

  • Fiedler S, Sommer M (2000) Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate. Global Biogeochem Cycles 14:1081–1093

    CAS  Google Scholar 

  • Francez A-J, Vasander H (1995) Peat accumulation and peat decomposition after human disturbance in French and Finnish mires. Acta Oecol 16:599–608

    Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785

    PubMed  CAS  Google Scholar 

  • Freeman C, Nevison GB, Kang H, Hughes S, Reynolds B, Hudson JA (2002) Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biol Biochem 34:61–67

    CAS  Google Scholar 

  • Frenzel P (2000) Plant associated methane oxidation in ricelands and wetlands. Adv Microb Ecol 16:85–114

    CAS  Google Scholar 

  • Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51:91–112

    CAS  Google Scholar 

  • Frenzel P, Rudolph J (1998) Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorum. Plant Soil 202:27–32

    CAS  Google Scholar 

  • Friborg T, Christensen TR, Hansen BU, Nordstroem C, Soegaard H (2000) Trace gas exchange in a high-arctic valley 2. Landscape CH4 fluxes measured and modeled using eddy correlation data. Global Biogeochem Cycles 14:715–723

    Google Scholar 

  • Friborg T, Soegaard H, Christensen TR, Lloyd CR, Panikov, NS (2003) Siberian wetlands: where a sink is a source. Geophys Res Lett 30:2129. DOI 10.1029/2003 GL017797

    Google Scholar 

  • Frolking S, Crill P (1994) Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling. Global Biogeochem Cycles 8:385–397

    CAS  Google Scholar 

  • Frolking SE, Bubier JL, Moore TR, Ball T, Bellisario LM, Bhardwaj A, Carroll P, Crill PM, Lafleur PM, McCaughey JH, Roulet NT, Suyker AE, Verma SB, Waddington JM, Whiting PJ (1998) Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochem Cycles 12:115–126

    CAS  Google Scholar 

  • Frolking S, Roulet NT, Moore TR, Lafleur PM, Bubier JL, Crill PM (2002) Modeling seasonal to annual carbon balance of Mer Bleu Bog, Ontario, Canada. Global Biogeochem Cycles 16. DOI 10.1029/2001GB001457

    Google Scholar 

  • Gajewski K, Viau A, Sawada M, Atkinson D, Wilson S (2001) Sphagnum peatland distribution in North America and Eurasia during the past 21000 years. Global Biogeochem Cycles 15:297–310

    CAS  Google Scholar 

  • Galand PE, Saarnio S, Fritze H, Yrjälä K (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449

    CAS  Google Scholar 

  • Galand PE, Fritze H, Yrjälä K (2003) Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen. Environ Microbiol 5:1133–1143

    PubMed  Google Scholar 

  • Garcia J-L, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    PubMed  CAS  Google Scholar 

  • Glaser PH, Chanton JP, Morin P, Rosenberry DO, Siegel DI, Ruud O, Chasar LI, Reeve AS (2004) Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Global Biogeochem Cycles 18:GB1003. DOI 10.1029/2003 GB002069

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable response to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Granberg G, Sundh I, Svensson BH, Nilsson M (2001) Effects of increased temperature, nitrogen, and sulphur deposition on methane emission from a mixed mire in northern Sweden: a three year factorial designed field experiment. Ecology 82:1982–1998

    Google Scholar 

  • Grant RF, Roulet, NT (2002) Methane efflux from boreal wetlands: theory and testing of the ecosystem model Ecosys with chamber and tower flux measurements. Global Biogeochem Cycles 16:1054. DOI 10.1029/2001GB001702

    Google Scholar 

  • Griffis TJ, Rouse WR, Waddington JM (2000) Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochem Cycles 14:1109–1122

    CAS  Google Scholar 

  • Hargreaves KJ, Fowler D, Pitcairn CER, Aurela M (2001) Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theor Appl Climatol 70:203–213

    Google Scholar 

  • Heilman MA, Carlton RG (2001) Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux. Biogeochemistry 52:207–224

    Google Scholar 

  • Heikkinen JEP (2003) Carbon balance of the arctic wetlands in Europe. Doctoral dissertation, Kuopio University Publications C. Natural and Environmental Sciences 153, Kuopio, Finland

    Google Scholar 

  • Heikkinen JEP, Elsakov V, Martikainen, PJ (2002) Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochem Cycles 16:1115. DOI 10.1029/2002GB001930

    Google Scholar 

  • Hoffland E (1992) Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape. Plant Soil 140:279–289

    CAS  Google Scholar 

  • Hornibrook ERC, Longstaffe FJ, Fyfe WS (1997) Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen biotope evidence. Geochim Cosmochim Acta 61:745–753

    CAS  Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder JB (1982) Methanothrix soehgenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9

    CAS  Google Scholar 

  • Ikkonen EN, Kurets VK, Grabovik SI, Drozdov SN (2001) The rate of carbon dioxide emission into the atmosphere from a southern Karelian mesooligotrophic bog. Russ J Ecol 32:382–385

    CAS  Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability, summary for policymakers, 3rd assessment report of the inter intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92:10767–10776

    Google Scholar 

  • Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    PubMed  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands-background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, Jyväskylä, Finland

    Google Scholar 

  • Karofeld E (2004) Mud-bottom hollows: exceptional features in carbon-accumulating bogs? Holocene 14:119–124

    Google Scholar 

  • Kelker D, Chanton J (1997) The effect of clipping on methane emissions from Carex. Biogeochemistry 39:37–44

    CAS  Google Scholar 

  • Kelley CA, Dise NB, Martens CS (1992) Temporal variations in the stable carbon isotopic composition of methane emitted from Minnesota peatlands. Global Biogeochem Cycles 6:263–269

    Google Scholar 

  • Kettunen A (2000) Short term carbon dioxide exchange and environmental factors in a boreal fen. Verh Int Ver Limnol 27:1–5

    Google Scholar 

  • Kettunen A (2002) Modeling of microscale variations in methane fluxes. Doctoral dissertation, Helsinki University of Technology, Systems Analysis Laboratory Research Reports A83, Helsinki, Finland

    Google Scholar 

  • Kettunen A (2003) Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: a modelling study. Global Biogeochem Cycles 17:1051. DOI 10.1029/2002GB001958

    Google Scholar 

  • Kettunen A, Kaitala V, Alm J, Silvola J, Nykänen H, Martikainen PJ (1996) Cross-correlation analysis of the dynamics of methane emissions from boreal peatlands. Global Biogeochem Cycles 10:457–471

    CAS  Google Scholar 

  • Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ (1999) Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol Biochem 31:1741–1749

    CAS  Google Scholar 

  • King JY, Reeburgh WS (2002) A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem 34:173–180

    CAS  Google Scholar 

  • King GM, Roslev P, Skovgaard H (1990) Distribution and rate of methane oxidation in sediments of the Florida Everglades. Appl Environ Microbiol 56:2902–2911

    PubMed  CAS  Google Scholar 

  • King JY, Reeburgh WS, Regli SK (1998) Methane emission and transport by arctic sedges in Alaska: results of a vegetation removal experiment. J Geophys Res 103:29083–29092

    CAS  Google Scholar 

  • King JY, Reeburgh WS, Thieler KK, Kling GW, Loya WM, Johnson LC, Nadelhoffer KJ (2002) Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: the contribution of photosynthates to methane emission. Global Biogeochem Cycles 16:1062. DOI 10.1029/2001GB001456

    Google Scholar 

  • Kivinen E, Pakarinen P (1981) Geographical distribution of peat resources and major peatland complex types in the world. Ann Acad Sci Fenn Ser A III Geol Geogr 132:1–28

    Google Scholar 

  • Koncalová H, Pokorny J, Kvêt J (1988) Root ventilation in Carex gracilis Curt.: diffusion or mass flow? Aquat Bot 30:149–155

    Google Scholar 

  • Korhola A, Tolonen K, Turunen J, Jungner H (1995) Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon 37:575–584

    CAS  Google Scholar 

  • Kuder, T, Kruge MA (2001) Carbon dynamics in peat bogs: insights from substrate macromolar chemistry. Global Biogeochem Cycles 115:721–727

    Google Scholar 

  • Kummerow J, Ellis BA (1984) Temperature effect on biomass production and root/shoot biomass ratios in two arctic sedges under controlled environmental conditions. Can J Bot 62:2150–2153

    Google Scholar 

  • Lafleur PM, McCaughey JH, Joiner DW, Bartlett PA, Jelinski DE (1997) Seasonal trends in energy, water, and carbon dioxide fluxes at a northern boreal wetland. J Geophys Res 102:29009–29020

    CAS  Google Scholar 

  • Lafleur PM, Roulet NT, Admiral SW (2001) Annual cycle of CO2 exchange at a bog peatland. J Geophys Res 106:3071–3081

    CAS  Google Scholar 

  • Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem Cycles 17:1036. DOI 10.1029/2002GB001983

    Google Scholar 

  • Laine J, Vasander H (1996) Ecology and vegetation gradients of peatlands. In: Vasander H (ed) Peatlands in Finland. Finnish Peatland Society, Helsinki, Finland, pp 10–19

    Google Scholar 

  • Laine J, Silvola J, Tolonen K, Alm J, Nykänen H, Vasander H, Sallantaus T, Sinisalo J, Martikainen PJ (1996) Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio 25:179–184

    Google Scholar 

  • Lamers LPM, Farhoush C, van Groenendael JM, Roelofs JGM (1999) Calcareous groundwater raised bogs: the concept of ombrotrophy revisited. J Ecol 87:639–648

    Google Scholar 

  • Lappalainen E (ed) (1996) Global peat resources. International Peat Society and Geological Survey of Finland, Jyväskylä, Finland

    Google Scholar 

  • Mäkilä M (1994) Calculation of the energy content of mires on the basis of peat properties (in Finnish with English summary). Geological Survey of Finland, report of investigations 121. Espoo, Finland

    Google Scholar 

  • Malmer N, Wallén B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. Holocene 14:11–117

    Google Scholar 

  • Malmer N, Svensson BM, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot Phytotaxon 29:483–496

    Google Scholar 

  • Martikainen PJ, Nykänen H, Alm J, Silvola J (1995) Changes in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites with different trophy. Plant Soil 168–169:571–577

    Google Scholar 

  • Mast MA, Wickland KP, Striegel T, Clow DW (1998) Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem Cycles 12:607–620

    CAS  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1:61–86

    CAS  Google Scholar 

  • Mattson MD, Likens GE (1990) Air pressure and methane fluxes. Nature 347:718–719

    Google Scholar 

  • Melloh RA, Crill PM (1996) Winter methane dynamics in a temperate peatland. Global Biogeochem Cycles 10:247–254

    CAS  Google Scholar 

  • Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by roots exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132:187–196

    CAS  Google Scholar 

  • Metsävainio K (1931) Untersuchungen über das Wurzelsystem der Moorpflanzen. Ann Bot Soc Zool-Bot Fenn Vanamo 1:1–422

    Google Scholar 

  • Mikkelä C, Sundh I, Svensson BH, Nilsson M (1995) Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish mire. Biogeochemistry 28:93–114

    Google Scholar 

  • Mooney HA (1986) Photosynthesis. In: Crawley MJ (ed) Plant ecology. Blackwell, Oxford, pp 345–373

    Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20

    CAS  Google Scholar 

  • Moore TR (2001) Les processus biogéochimiques lies au carbone. In: Payette S, Rochefort L (eds) Écologie des tourbières du Québec-Labrador. Les Presses de l’Université Laval, Sainte-Foy, pp 183–197

    Google Scholar 

  • Moore TR (2003) Dissolved organic carbon in a northern boreal landscape. Global Biogeochem Cycles 17:1109. DOI 10.1029/2003GB002050

    Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux: water table position relations in northern peatlands. Geophys Res Lett 20:587–590

    CAS  Google Scholar 

  • Moore T, Roulet N, Knowles R (1990) Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochem Cycles 4:29–46

    CAS  Google Scholar 

  • Moore TR, Heyes A, Roulet NT (1994) Methane emissions from wetlands, southern Hudson Bay lowland. J Geophys Res 99:1455–1467

    CAS  Google Scholar 

  • Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycle of Canadian peatlands. Clim Change 40:229–245

    CAS  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36

    Google Scholar 

  • Moosavi SC, Crill PM (1998) CH4 oxidation by tundra wetlands as measured by a selective inhibitor technique. J Geophys Res 103:29093–29106

    CAS  Google Scholar 

  • Morrissey LA, Livingston GP (1992) Methane emission from Alaska arctic tundra: an assessment of local scale variability. J Geophys Res 97:16661–16670

    CAS  Google Scholar 

  • Morrissey LA, Zobel DB, Livingston GP (1993) Significance of stomatal control on methane release from Carex dominated wetlands. Chemosphere 26:339–355

    CAS  Google Scholar 

  • Nilsson M, Bohlin E (1993) Methane and carbon dioxide concentrations in bogs and fens with special reference to the effects of the botanical composition of peat. J Ecol 81:615–625

    CAS  Google Scholar 

  • Nilsson M, Mikkelä C, Sundh I, Granberg G, Svensson BH, Ranneby B (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. J Geophys Res 106:20847–20860

    CAS  Google Scholar 

  • Norman JM, Kucharik CJ, Gower ST, Baldocchi DD, Crill PM, Rayment M, Savage K, Striegl RG (1997) A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J Geophys Res 102:28771–28777

    CAS  Google Scholar 

  • Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochem Cycles 12:53–69

    Google Scholar 

  • Nykänen H, Vasander H, Huttunen JT, Martikainen PJ (2002) Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant Soil 242:147–155

    Google Scholar 

  • Nykänen H, Heikkinen JEP, Pirinen L, Tiilikainen K, Martikainen PJ (2003) Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochem Cycles 17:1018. DOI 10.1029/2002GB001861

    Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in arctic CO2 flux over two decades: effects of climate change at Barrow, Alaska. Ecol Appl 5:846–855

    Google Scholar 

  • Oechel WC, Vourlitis G, Hastings SJ (1997) Cold season CO2 emission from arctic soils. Global Biogeochem Cycles 11:163–172

    CAS  Google Scholar 

  • Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): winter fluxes and thaw activation dynamics. Global Biogeochem Cycles 14:1071–1080

    CAS  Google Scholar 

  • Pearce DME, Clymo RS (2001) Methane oxidation in a peatland core. Global Biogeochem Cycles 15:709–720

    CAS  Google Scholar 

  • Pitkänen A, Turunen J, Tolonen K (1999) The role of fire in the carbon dynamics of a mire, eastern Finland. Holocene 9:453–462

    Google Scholar 

  • Popp TJ, Chanton JP, Whiting GJ, Grant N (1999) Methane stable isotope distribution at a Carex dominated fen in north central Alberta. Global Biogeochem Cycles 13:1063–1077

    CAS  Google Scholar 

  • Popp TJ, Chanton JP, Whiting GJ, Grant N (2000) Evaluation of methane oxidation in the rhizosphere of a Carex dominated fen in north central Alberta, Canada. Biogeochemistry 51:259–281

    CAS  Google Scholar 

  • Prinn PR (1994) The interactive atmosphere: global atmospheric-biospheric chemistry. Ambio 23:50–61

    Google Scholar 

  • Reader RJ, Stewart JM (1972) The relationship between net primary production and accumulation for a peatland in southeastern Manitoba. Ecology 53:1024–1037

    Google Scholar 

  • Robinson SD, Moore TR (2000) The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada. Arct Antarct Alp Res 32:155–166

    Google Scholar 

  • Roehm CL, Roulet NT (2003) Seasonal contribution of CO2 fluxes in the annual C budget of a northern bog. Global Biogeochem Cycles 17:1029. DOI 10.1029/2002GB001889

    Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134

    Google Scholar 

  • Roslev P, King GM (1994) Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl Environ Microbiol 60:2602–2608

    PubMed  CAS  Google Scholar 

  • Roulet NT, Moore T, Bubier JL, Lafleur PM (1992) Northern fens: methane flux and climatic change. Tellus B 44:100–105

    Google Scholar 

  • Roulet NT, Ash R, Quinton W, Moore T (1993) Methane flux from drained northern peatlands: effect of persisting water table lowering on flux. Global Biogeochem Cycles 7:749–769

    CAS  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    CAS  Google Scholar 

  • Ruimy AP, Jarvis D, Baldocchi D, Saugier B (1996) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 26:1–68

    Google Scholar 

  • Russell RS (1977) Plant root systems: their function and interaction with the soil. McGraw-Hill, London

    Google Scholar 

  • Saarinen T (1996) Biomass and production of two vascular plants in a boreal mesotrophic fen. Can J Bot 74:934–938

    Google Scholar 

  • Saarinen T (1999) Vascular plants as input of carbon in boreal sedge fens: control of production and partitioning of biomass. Publications in Botany, University of Helsinki 28, Yliopistopaino, Finland

    Google Scholar 

  • Saarnio S, Silvola J (1999) Effects of increased CO2 and N on CH4 efflux from a boreal mire: a growth chamber experiment. Oecologia 119:349–356

    Google Scholar 

  • Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Martikainen PJ (1997) Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia 110:414–422

    Google Scholar 

  • Saarnio S, Alm J, Martikainen PJ, Silvola J (1998) Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from, a boreal mire. J Ecol 86:261–268

    CAS  Google Scholar 

  • Saarnio S, Järviö S, Saarinen T, Vasander H, Silvola J (2003) Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply. Ecosystems 6:46–60

    CAS  Google Scholar 

  • Sallantaus T (1992) Leaching in the material balance of peatlands — preliminary results. Suo 43:253–258

    Google Scholar 

  • Scanlon D, Moore T (2000) CO2 production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–160

    CAS  Google Scholar 

  • Schiff S, Aravena R, Mewhinney E, Elgood R, Warner BG, Dillon P, Trumbore S (1998) Precambrian shield wetlands-hydrologic control of the sources and export of dissolved organic matter. Clim Change 40:167–188

    CAS  Google Scholar 

  • Schimel JP (1995) Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28:183–200

    CAS  Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8:51–81

    CAS  Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB (1985) Methane emissions to the atmosphere through aquatic plants. J Environ Qual 14:40–46

    CAS  Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB, Sebacher SM, Grice SS (1986) Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus 38:1–10

    Google Scholar 

  • Segers R, Kengen SWM (1998) Soil methane production as a function of anaerobic carbon mineralisation: a process model. Soil Biol Biochem 30:1107–1117

    CAS  Google Scholar 

  • Segers R, Rappoldt C, Leffelaar PA (2001) Modeling methane fluxes in wetlands with gas-transporting plants 2. Soil layer scale. J Geophys Res 106:3529–3540

    CAS  Google Scholar 

  • Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27:35–60

    Google Scholar 

  • Shaver GR, Cutler JC (1979) The vertical distribution of live vascular phytomass in cottongrass tussock tundra. Arct Alp Res 11:335–342

    Google Scholar 

  • Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochem Cycles 18:GB3004. DOI 10.1029/2003GB002190

    Google Scholar 

  • Shurpali NJ, Verma SB (1998) Micrometeorological measurements of methane flux in a Minnesota peatland during two growing seasons. Biogeochemistry 40:1–15

    CAS  Google Scholar 

  • Shurpali NJ, Verma SB, Clement RJ, Billesbach DP (1993) Seasonal distribution of methane flux in a Minnesota peatland measured by eddy correlation. J Geophys Res 98:20649–20655

    Google Scholar 

  • Shurpali N, Saarnio S Alm, J (2004) Modelling land use impacts of annual emissions of CO2, CH4 and N2O from peatlands in Finland. In: Päivänen J (ed) Wise use of peatlands. Proceedings of the 12th international peat congress, vol. 1, pp 170–177

    Google Scholar 

  • Silvola J, Hanski I (1979) Carbon accumulation in a raised bog. Oecologia 37:285–295

    Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ (1996a) The contribution of plant roots to CO2 fluxes from organic soils. Biol Fert Soils 23:126–131

    CAS  Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ (1996b) CO2 fluxes from boreal mires under varying temperature and moisture conditions. J Ecol 84:219–228

    Google Scholar 

  • Silvola J, Saarnio S, Foot J, Sundh I, Greenup A, Heijmans M, Ekberg A, Mitchell E, van Breemen N (2003) Effects of elevated CO2 and N deposition on CH4 emissions from European mires. Global Biogeochem Cycles 17:GB1068. DOI 10.1029/2002GB001886

    Google Scholar 

  • Sjörs H (1981) Peat on earth: multiple use or conservation? Ambio 9:303–308

    Google Scholar 

  • Sjörs H (1991) Phyto-and necromass above and below ground in a fen. Holarctic Ecol 14:208–218

    Google Scholar 

  • Soegaard H, Nordstroem C (1999) Carbon dioxide exchange in a high-arctic fen estimated by eddy covariance measurements and modeling. Global Change Biol 5:547–562

    Google Scholar 

  • Soegaard H, Nordstroem C, Friborg T, Hansen BU, Christensen TR, Bay C (2000) Trace gas exchange in a high-arctic valley, 3. Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing. Global Biogeochem Cycles 14:725–744

    CAS  Google Scholar 

  • Sommerfeld RA, Mosier AR, Musselman RC (1993) CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361:140–142

    CAS  Google Scholar 

  • Sommerfeld RA, Massman WJ, Musselman RC, Mosier AR (1996) Diffusional flux of CO2 through snow: spatial and temporal variability among alpine-subalpine sites. Global Biogeochem Cycles 10:473–482

    CAS  Google Scholar 

  • Strack M, Waddington JM, Tuittila E-S (2004) Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Global Biogeochem Cycles 18:GB4003. DOI 10.1029/2003GB002209

    Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biol 9:1185–1192

    Google Scholar 

  • Sundh I, Nilsson M, Granberg G, Svensson BH (1994) Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb Ecol 27:253–265

    CAS  Google Scholar 

  • Sundh I, Mikkelä C, Nilsson M, Svensson BH (1995) Potential aerobic methane oxidation in a Sphagnum dominated peatland — controlling factors and relation to methane emission. Soil Biol Biochem 27:829–837

    Google Scholar 

  • Svensson BH (1984) Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl Environ Microbiol 48:389–394

    PubMed  CAS  Google Scholar 

  • Svensson BH, Rosswall T (1984) In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43:341–350

    CAS  Google Scholar 

  • Svensson BH, Sundh I (1992) Factors affecting methane production in peat soils. Suo 43:183–190

    Google Scholar 

  • Svensson BH, Veum AK, Kjelvik S (1975) Carbon losses from tundra soils. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems 1, plants and microorganisms. Springer, Berlin Heidelberg New York, pp 279–286

    Google Scholar 

  • Tatarinov F, Kurbatova J, Molchanov A, Minaeva T, Orlov T (2003) Measuring of components of peat and ground vegetation CO2 balance in a southern taiga peat bog. In: Järvet A, Lode E (eds) Ecohydrological processes in northern wetlands. Tartu University Press, Tartu, pp 215–220

    Google Scholar 

  • Thomas KL, Benstead J, Davies KL, Lloyd D (1996) Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol Biochem 28:17–23

    Google Scholar 

  • Thomas PA, Pearce DME (2004) Role of cation exchange in preventing the decay of anoxic deep bog peat. Soil Biol Biochem 36:23–32

    CAS  Google Scholar 

  • Tjuremnov SN (1949) Torfjanie mestorochdenija. 2 izd. Nedra, Moscow

    Google Scholar 

  • Tolonen K (1979) Peat as a renewable resource: long-term accumulation rates in northeuropean mires. In: Kivinen E, Heikurainen L, Pakarinen P (eds) Classification of peat and peatlands. International Peat Society, Helsinki, Finland, pp 282–296

    Google Scholar 

  • Tolonen K, Vasander H, Damman AWH, Clymo RS (1992) Preliminary estimate of long-term carbon accumulation and loss in 25 boreal peatlands. Suo 43:277–280

    Google Scholar 

  • Torn MS, Chapin FS III (1993) Environmental and biotic controls over methane flux from Arctic tundra. Chemosphere 26:357–368

    CAS  Google Scholar 

  • Tuittila E-S, Komulainen V-M, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cut-away peatland. Global Change Biol 6:569–581

    Google Scholar 

  • Tuittila E-S, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced Sphagnum to water level variation in a cut-away peatland. Restor Ecol 12:483–493

    Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH (2002) Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–912

    CAS  Google Scholar 

  • Turetsky MR, Amiro BD, Bosch E, Bhatti JS (2004) Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Global Biogeochem Cycles 18:GB4014. DOI 10.1029/2004GB002222

    Google Scholar 

  • Turunen J. (2003) Past and present carbon accumulation in undisturbed boreal and subarctic mires: a review. Suo 54:15–28

    Google Scholar 

  • Turunen J, Moore TR (2003) Controls of carbon accumulation and storage in the mineral subsoil beneath peat in Lakkasuo mire, central Finland. Eur J Soil Sci 54:279–286

    Google Scholar 

  • Turunen J, Tolonen K, Tolvanen S, Remes M, Ronkainen J, Jungner H (1999) Carbon accumulation in the mineral subsoil of boreal mires. Global Biogeochem Cycles 13:71–79

    CAS  Google Scholar 

  • Turunen J, Tahvanainen T, Tolonen K, Pitkänen A (2001) Carbon accumulation in West Siberian mires, Russia. Global Biogeochem Cycles 15:285–296

    CAS  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland — application to boreal and subarctic regions. Holocene 12:69–80

    Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulations. Ecol Appl 11:311–326

    Google Scholar 

  • Urban NR, Bayley SE, Eisenreich SJ (1989) Export of dissolved organic carbon and acidity from peatlands. Water Resour Res 25:1619–1628

    CAS  Google Scholar 

  • Valentine DW, Holland EA, Schimel DS (1994) Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res 99:1563–1571

    CAS  Google Scholar 

  • van den Pol-van Dasselaar A, Oenema O (1999) Methane production and carbon mineralisation of size and density fractions of peat soil. Soil Biol Biochem 31:877–886

    Google Scholar 

  • van den Pol-van Dasselaar A, van Beusichem ML, Oenema O (1999) Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry 44:221–237

    Google Scholar 

  • van der Nat F-J, Middelburg JJ (1998) Effects of two common macrophytes on methane dynamics in freshwater systems. Biogeochemistry 43:70–104

    Google Scholar 

  • van der Nat F-JWA, Middelburg JJ, van Meteren D, Wielemakers A (1998) Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry 41:1–22

    Google Scholar 

  • van Veen JA, Merckx R, van de Geijn SC (1989) Plant-and soil-related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115:179–188

    Google Scholar 

  • Vasander H (1982) Plant biomass and production in virgin, drained and fertilized sites in a raised bog in southern Finland. Ann Bot Fenn 19:103–125

    Google Scholar 

  • Vasander H, Tuittila E-S, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen M-L, Laine J (2003) Status and restoration of peatlands in northern Europe. Wetlands Ecol Manage 11:51–53

    CAS  Google Scholar 

  • Verville JH, Hobbie SE, Chapin FS, Hooper DU (1998) Response of CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 41:215–235

    CAS  Google Scholar 

  • Vitt DH, Halsey LA, Bauer IE, Campbell C (2000) Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can J Earth Sci 37:683–693

    CAS  Google Scholar 

  • von Fischer JC, Hedin LO (2002) Separating methane production and consumption with a field-based isotope pool dilution technique. Global Biogeochem Cycles 16:1034. DOI 10.1029/2001GB001448

    Google Scholar 

  • Vourlitis GL, Oechel WC (1999) Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology 80:686–701

    Google Scholar 

  • Vourlitis GL, Oechel WC, Hastings SJ, Jenkins MA (1993) The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystems on the north slope of Alaska. Chemosphere 26:329–337

    CAS  Google Scholar 

  • Waddington JM, Roulet NT (2000) Carbon balance of a boreal patterned peatland. Global Change Biol 6:87–97

    Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22785

    CAS  Google Scholar 

  • Wallén B (1986) Above and below ground dry mass of the three main vascular plants on hummocks on a subarctic peat bog. Oikos 46:51–56

    Google Scholar 

  • Wallén B (1992) Methods for studying below-ground production in mire ecosystems. Suo 43:155–162

    Google Scholar 

  • Walter BP, Heimann M, Matthews E (2001a) Modeling modern methane emissions from natural wetlands, 1. Model description and results. J Geophys Res 106:34189–34206

    CAS  Google Scholar 

  • Walter BP, Heimann M, Matthews E (2001b) Modeling modern methane emissions from natural wetlands, 2. Interannual variations 1982–1993. J Geophys Res 106:34207–34219

    CAS  Google Scholar 

  • Warner BG, Clymo RS, Tolonen K (1993) Implications of peat accumulation at Point Escuminac, New Brunswick. Quat Res 39:245–248

    Google Scholar 

  • Westermann P (1993) Temperature regulation of methanogenesis in wetlands. Chemosphere 26:321–328

    CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1988) A methane flux time series for tundra environments. Global Biogeochem Cycles 2:399–409

    CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1992) Interannual variations in tundra methane emisison: a four year time series at fixed sites. Global Biogeochem Cycles 6:139–159

    CAS  Google Scholar 

  • Whiting GJ, Chanton JP (1992) Plant-dependent CH4 emission in a subarctic Canadian fen. Global Biogeochem Cycles 6:225–231

    CAS  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795

    CAS  Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53:521–528

    Google Scholar 

  • Whiting GJ, Chanton JR, Bartlett DS, Happell JD (1991) Relationship between CH4 emission biomass and CO2 exchange in a subtropical grassland. J Geophys Res 96:13067–13071

    CAS  Google Scholar 

  • Windsor J, Moore TR, Roulet NT (1992) Episodic fluxes of methane from subarctic fens. Can J Soil Sci 72:441–452

    CAS  Google Scholar 

  • Yavitt JB, Lang GE, Downey GE (1988) Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian mountains, United States. Global Biogeochem Cycles 2:253–268

    CAS  Google Scholar 

  • Yavitt JA, Downey DM, Lancaster E, Lang GE (1990) Methane consumption in decomposing Sphagnum-derived peat. Soil Biol Biochem 22:441–447

    CAS  Google Scholar 

  • Yu Z, Vitt DH, Campbell ID, Apps MJ (2003) Understanding Holocene peat accumulation pattern of continental fens in western Canada. Can J Bot 81:267–282

    Google Scholar 

  • Zhuang Q, Melillo JM, Kicklighter DW, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Global Biogeochem Cycles 18:GB3010. DOI 10.1029/2004GB002239

    Google Scholar 

  • Zimov SA, Zimova GM, Daviodov, SP, Daviodova AI, Voropaev YV, Voropaeva ZV, Zemiletov IP, Zemiletova IV (1993) Winter biotic and production of CO2 in Siberia soils: a factor in the greenhouse effect. J Geophys Res 98:5017–5023

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vasander, H., Kettunen, A. (2006). Carbon in Boreal Peatlands. In: Wieder, R.K., Vitt, D.H. (eds) Boreal Peatland Ecosystems. Ecological Studies, vol 188. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-31913-9_9

Download citation

Publish with us

Policies and ethics