Skip to main content

The Hydrology of Peatlands

  • Chapter
Boreal Peatland Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 188))

13.6 Conclusions

Hydrogeologic investigations over the past 20 years have largely confirmed the concepts developed by peatland ecologists that stress the close linkage between hydrology and peatland ecology. However, these studies have also shown how groundwater flow systems interacting with the climate, geology, and biota of large peat basins largely shape the ecological development of these waterlogged ecosystems. Hydrogeologic methodology therefore provides a rigorous quantitative approach based on first principles of chemistry and physics to constrain the largely empirical statistical methods favored by ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almendinger JC, Almendinger JE, Glaser PH (1986) Topographic fluctuations across a spring-fen and raised bog in the Lost River peatland, northern Minnesota. J Ecol 74:393–401

    Article  Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling. Academic, New York

    Google Scholar 

  • Armstrong AC (1995) Hydrogeological model of peat-mound form with vertically varying hydraulic conductivity. Earth Surf Processes Landforms 20:473–477

    Google Scholar 

  • Baden W, Eggelsmann R (1963) Zur Durchlässigkeit der Moorböden. Z Kult Tech 4:226–254

    Google Scholar 

  • Baird AJ, Gaffney SW (1994) Cylindrical piezometer responses in a humified fen peat. Nord Hydrol 25:167–182

    Google Scholar 

  • Beard J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Beckwith CW, Baird AJ (2001) The effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat. Water Resour Res 37:551–558

    Article  Google Scholar 

  • Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc Lond Ser B 268:1315–1321

    Article  CAS  Google Scholar 

  • Bennett PC, Siegel DI, Hill B, Glaser PH (1990) The fate of silica in a peat bog. Geology 19:328–331

    Article  Google Scholar 

  • Boelter DH (1969) Physical properties of peats related to degree of decomposition. Oil Sci Soc Am Proc 33:606–609

    Google Scholar 

  • Boelter DH, Verry ES (1977) Peatland water in the northern Lake States. U S Dep Agric Tech Rep NC-31:1–22

    Google Scholar 

  • Boldt DR (1986) Computer simulations of groundwater flow in a raised bog system, Glacial Lake Agassiz peatlands, northern Minnesota. MS thesis, Syracuse University, Syracuse

    Google Scholar 

  • Brown A, Mathur SP, Kushhner DJ (1989) An ombrotrophic bog as a methane/reservoir. Global Biogeochem Cycles 3:205–213

    CAS  Google Scholar 

  • Chason D, Siegel D (1986) Hydraulic conductivity and related physical properties of peat, Lost River peatland, northern Minnesota. Soil Sci 142:91–99

    Google Scholar 

  • Childs EC (1969) Introduction to the physical principles of soil water phenomena. Wiley, London, pp 338–340, 406–408

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Lewis

    Google Scholar 

  • Clymo RS (1984). The limits to peat bog growth. Philos Trans R Soc Lond 303:605–654

    Google Scholar 

  • Clymo RS (1991) Peat growth. In: Shane LCK, Cushing EJ (eds) Quaternary landscapes. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Dau JHC (1823) Neues Handbuch über den Torf. JC Hinrichsche Buchhandlung, Leipzig

    Google Scholar 

  • Devito KJ, Waddington JM, Fowle BA (1997) Flow reversals in peatlands influenced by local groundwater systems. Hydrol Processes 11:103

    Article  Google Scholar 

  • Dinel H, Mathur SP, Brown A, Levesque M (1988) A field study of the effect of depth on methane production in peatland waters: equipment and preliminary results. J Ecol 76:1083–1091

    Article  CAS  Google Scholar 

  • Faure G (1986) Principles of isotope geochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Fechner-Levy E, Hemond HF (1996) Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnol Oceanogr 41:1375–1383

    Article  CAS  Google Scholar 

  • Fetter CW (2000) Applied hydrogeology, 4th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Fraser CJD, Roulet NT, Lafleur PM (2001) Groundwater flow patterns in a large peatland. J Hydrol 246:142–154

    Article  CAS  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Freeze RA, Witherspoon PA (1978) Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathematical model. Water Resour Res 2:641–656

    Google Scholar 

  • Gilman K, Newsome MD (1980) Soil pipes and pipeflow — a hydrological study in upland Wales. British Geomorphological Research Group research monograph series, no 1. Geo Books, Norwich

    Google Scholar 

  • Glaser PH (1987) The development of streamlined bog islands in the interior of North America. Arct Alp Res 19:402–413

    Article  Google Scholar 

  • Glaser PH (1992) Raised bogs in eastern North America: regional controls on species richness and floristic assemblages. J Ecol 80:535–554

    Article  Google Scholar 

  • Glaser PH (2002) CA Weber’s benchmark treatise on the Augstumal bog: reflections on its impact and significance to peatland ecology. In: Couwenberg J, Joosten H (eds.) CA Weber and the raised bog of Augstmal. IMCG and Grif & K, Tula, pp 6–21

    Google Scholar 

  • Glaser PH, Janssens JA (1986) Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Can J Bot 64:395–415

    Google Scholar 

  • Glaser PH, Wheeler GA, Gorham E, Wright HE Jr (1981) The patterned peatlands of the Red Lake peatland, northern Minnesota: vegetation, water chemistry, and landforms. J Ecol 69:575–599

    Article  CAS  Google Scholar 

  • Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to hydrological and chemical gradients in the Lost River peatland, northern Minnesota. J Ecol 78:1021–1048

    Article  Google Scholar 

  • Glaser PH, Bennett PC, Siegel DI, Romanowicz EA (1996) Paleo-reversals in ground-water flow and peatland development; in the Lost River peatland, northern Minnesota, USA. Holocene 6:413–421

    Google Scholar 

  • Glaser PH, Siegel DI, Shen YP, Romanowicz EA (1997) Regional linkages between raised bogs and the climate, groundwater, and landscape features of northwestern Minnesota. J Ecol 85:3–16

    Article  Google Scholar 

  • Glaser PH, Chanton JP, Morin P, Rosenberry DO, Siegel DI, Ruud O, Chasar LI, Reeve AS (2004a) Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Global Biogeochem Cycles 18:GB1003. DOI 10.1029/2003 GBO02069

    Article  CAS  Google Scholar 

  • Glaser PH, Siegel DI, Reeve AS, Janssens JA, Janecky DR (2004b). Tectonic drivers for vegetation patterning and landscape evolution in the Albany River region of the Hudson Bay lowlands. J Ecol 92:1054–1070

    Article  Google Scholar 

  • Glaser PH, Hansen BCS, Siegel DI, Reeve AS, Morin PJ (2004c) Rates, pathways, and drivers for peatland development in the Hudson Bay lowlands, northern Ontario. J Ecol 92:1036–1052

    Article  Google Scholar 

  • Gorham E (1953) Some early ideas concerning the nature, origin, and development of peat lands. J Ecol 41:257–274

    Article  Google Scholar 

  • Gorham E, Eisenreich SJ, Ford J, Sandtelmann MV (1985) The chemistry of bog waters. In: Stumm W (ed) The chemical processes in lakes. Wiley, New York, pp 330–363

    Google Scholar 

  • Hemond HF (1980) Biogeochemistry of Thoreau’s Bog. Concord, Massachusetts. Ecol Monogr 50:507–526

    Article  CAS  Google Scholar 

  • Hill BM, Siegel DI (1991) Groundwater flow and the metal content of peat. J Hydrol 78:1021–1048

    Google Scholar 

  • Hobbs NB (1986) Mire morphology and the properties and behaviour of some British and foreign peats. Quart J Eng Geol Lond 19:7–80

    Article  Google Scholar 

  • Hogan JF, Blum JD, Siegel DI, Glaser PH (2000) 87Sr/86Sr as a tracer of groundwater discharge and precipitation recharge in the Glacial Lake Agassiz peatlands, northern Minnesota. Water Resour Res 36:3701–3710

    Article  Google Scholar 

  • Hvorslev JM (1951) Time lag and soil permeability in ground-water observations. Bulletin no 36, US Corps of Engineers, Waterway Experiment Station, Vicksburg

    Google Scholar 

  • Ingram HAP (1978) Soil layers in mires: function and terminology. J Soil Sci 29:224–227

    Article  Google Scholar 

  • Ingram HAP (1982) Size and shape in raised mire ecosystems: a geophysical model. Nature 297:300–303

    Article  Google Scholar 

  • Ingram HAP (1983) Hydrology. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen, and moor. General studies. Elsevier, Amsterdam, pp 67–158

    Google Scholar 

  • Ivanov KE (1981) Water movement in mirelands. Translated by Thomson A, Ingram HAP (1975) Vodoobmen v bolotnykh landshaftakh. Academic, London

    Google Scholar 

  • Iverson J (1973) The development of Denmark’s nature since the last glacial. Reitzels, Copenhagen

    Google Scholar 

  • Jones JAA (1981) The nature of soil piping: a review of research. British Geomorphological Research Group research monograph series. Geo Books, Norwich

    Google Scholar 

  • Kneale P (1987) Sensitivity of the groundwater mound model for predicting mire topography, Nordic Hydrol 18:193–202

    Google Scholar 

  • Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83

    Article  Google Scholar 

  • Miller P, Shaw GH, Glaser PH, Siegel DI (1992) Bedrock topography beneath the Red Lake peatlands. Geological Society of America, National Meeting, Cincinnati

    Google Scholar 

  • Nuttle WK, Hemond HF, Stolzenbach KD (1990) Mechanisms of water storage in salt marsh sediments: the importance of dilation. Hydrol Processes 4:1–13

    Google Scholar 

  • Ours DP, Siegel DI, Glaser PH (1997) Chemical dilation and the dual porosity of humified bog peat. J Hydrol 196:348–360

    Article  CAS  Google Scholar 

  • Price JS, Schlotzhauer SM (1999) Importance of shrinkage and compression in determining water storage changes in peat: the case of a mined peatland. Hydrol Processes 13:2591–2601

    Article  Google Scholar 

  • Reeve AS (1996). Numerical and multivariate statistical analysis of hydrogeology and geochemistry in large peatlands. PhD dissertation, Syracuse University, Syracuse

    Google Scholar 

  • Reeve AS, Siegel DI, Glaser PH (2000) Simulating vertical flow in large peatlands. J Hydrol 227:207–217

    Article  Google Scholar 

  • Reeve AS, Siegel DI, Glaser PH (2001) Simulating dispersive mixing in large peatlands. J Hydrol 242:103–114

    Article  CAS  Google Scholar 

  • Reynolds WD, Brown DA, Mathur SP, Overend RP (1992) Effect of in-situ gas accumulation on the hydraulic conductivity of peat. Soil Sci 153:397–408

    CAS  Google Scholar 

  • Romanowicz EA, Siegel DI, Glaser PH (1993) Hydraulic reversals and episodic methane emissions during drought cycles in mires. Geology 21:231–234

    Article  Google Scholar 

  • Romanowicz EA, Siegel DI, Chanton JP, Glaser PH (1995) Temporal variations in dissolved methane deep in the Lake Agassiz peatlands, Minnesota (USA). Global Biogeochem Cycles 9:197–212

    Article  CAS  Google Scholar 

  • Rosenberry DO, Glaser PH, Siegel DI, Weeks ED (2003) Use of hydraulic head to estimate volumetric gas content and ebullition flux in northern peatlands. Water Resour Res 39:1066

    Article  Google Scholar 

  • Roulet NT, McKenzie JW (1998) Role of groundwater in determining the pattern of peatlands in the Hudson Bay lowlands. Geological Society of America annual meeting abstracts with programs 30(7):A–119

    Google Scholar 

  • Rycroft DW, Williams DJA, Ingram HAP (1975) The transmission of water through peat. I. Review. J Ecol 63:535–556

    Google Scholar 

  • Siegel DI (1981) Hydrogeologic setting of the Glacial Lake Agassiz peatlands, northern Minnesota. US Geol Sur Water Resour Invest 81-24a:1–30

    Google Scholar 

  • Siegel DI (1983) Groundwater and the evolution of patterned mires, Glacial Lake Agassiz peatlands, northern Minnesota. J Ecol 71:913–923

    Article  Google Scholar 

  • Siegel DI (1988a) The recharge discharge function of wetlands near Juneau, Alaska: part I. Hydrologic investigations. J Ground Water 26:427–434

    Article  Google Scholar 

  • Siegel DI (1988b) The recharge discharge function of wetlands near Juneau, Alaska: part II. Geochemical investigations. J Ground Water 26:580–586

    Article  CAS  Google Scholar 

  • Siegel DI, Glaser PH (1987) Groundwater flow in a bog-fen complex, Lost River peatland, northern Minnesota. J Ecol 75:743–754

    Article  Google Scholar 

  • Siegel DI, Reeve AS, Glaser PH, Romanowicz E (1995) Climate-driven flushing of pore water in humified peat. Nature 374:531–533

    Article  CAS  Google Scholar 

  • Siegel DI, Chanton JP, Glaser PH, Chasar LS, Rosenberry DO (2001) Estimating methane production rates in bogs and landfills by deuterium enrichment of pore-water. Global Biogeochem Cycles 15:967–975

    Article  CAS  Google Scholar 

  • Siegel DI, Glaser PH, So J, Janecky DR (2006) The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin. J Hydrol (in press)

    Google Scholar 

  • Sjörs H (1963) Bogs and fens on Attawapiskat River, northern Ontario. Nat Mus Can Bull Contrib Bot 171:1–31

    Google Scholar 

  • Sjörs H (1983) Mires of Sweden. In: Gore AJP (ed) Ecosystems of the world 4B. Mires: swamp, bog, fen and moor. Regional studies. Elsevier, Amsterdam, pp 69–94

    Google Scholar 

  • Van Seters T, Price JS (2001) The impact of peat harvesting and natural regeneration on the water balance of an abandoned bog, Quebec. Hydrol Processes 15:233–248

    Article  Google Scholar 

  • Waddington JM, Roulet NT (1997) Groundwater flow and dissolved carbon movement in a boreal peatland. J Hydrol 191:122–138

    Article  CAS  Google Scholar 

  • Wang H F, Anderson MP (1982) Introduction to groundwater models. Finite difference and finite element methods. Academic, San Diego

    Google Scholar 

  • Weber CA (1902) Ãœber die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta mit vergleichenden Ausblicken auf andere Hochmoore der Erde. Parey, Berlin

    Google Scholar 

  • Wickman FE (1951) The maximum limiting height of raised bogs and a note on the motion of water in soligenous mires. Geol Foren Stockholm Foerh 73:413–422

    Google Scholar 

  • Wilcox DA, Shedlock RJ, Henderson WH (1986) Hydrology, water chemistry and ecological relations in the raised mound of Cowles Bog. J Ecol 74:1103–1117

    Article  Google Scholar 

  • Winston RB (1994) Models of the geomorphology, hydrology, and development of domed peat bodies. Geol Soc Am Bull 106:1594–1604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegel, D.I., Glaser, P. (2006). The Hydrology of Peatlands. In: Wieder, R.K., Vitt, D.H. (eds) Boreal Peatland Ecosystems. Ecological Studies, vol 188. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-31913-9_13

Download citation

Publish with us

Policies and ethics