Advertisement

The Nitrogen Cycle in Boreal Peatlands

  • Juul Limpens
  • Monique M. P. D. Heijmans
  • Frank Berendse
Part of the Ecological Studies book series (ECOLSTUD, volume 188)

Keywords

Sphagnum Moss Global Change Biol Boreal Peatlands Ombrotrophic Peatlands Lagg Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adema EH, Heeres R, Hulskotte J (1986) On the dry deposition of NH3, SO2 and NO2 on wet surfaces in a small scale wind tunnel. Proceedings of the 7th world clean air congress, Sydney, AustraliaGoogle Scholar
  2. Aerts R, Chapin FSI (2000) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv Ecol Res 30:1–67Google Scholar
  3. Aerts R, Wallén B, Malmer N (1992) Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140CrossRefGoogle Scholar
  4. Aerts R, Wallén B, Malmer N, De Caluwe H (2001) Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. J Ecol 89:292–299CrossRefGoogle Scholar
  5. Akkermans A DL (1971) Nitrogen fixation and nodulation of Alnus and Hippophae under natural conditions. PhD thesis, University of Leiden, The NetherlandsGoogle Scholar
  6. Aldous AR (2002a) Nitrogen retention by Sphagnum mosses: responses to atmospheric nitrogen deposition and drought. Can J Bot 80:721–731CrossRefGoogle Scholar
  7. Aldous AR (2002b) Nitrogen translocation in Sphagnum mosses: effects of atmospheric nitrogen deposition. New Phytol 156:241–253CrossRefGoogle Scholar
  8. Anderson DE (2002) Carbon accumulation and C/N ratios of peat bogs in northwest Scotland. Scot Geogr J 118:323–341Google Scholar
  9. Asman WAH, Sutton MA, Schjorring JK (1998). Ammonia: emission, atmospheric transport and deposition. New Phytol 139:27–48CrossRefGoogle Scholar
  10. Backéus I (1985) Aboveground production and growth dynamics of vascular bog plants. Thesis, Uppsala University, UppsalaGoogle Scholar
  11. Bartsch I, Moore TR (1985) A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can J Bot 63:1241–1248CrossRefGoogle Scholar
  12. Basilier K, Granhall V, Stenstrøm TA (1978) Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos 31:236–246Google Scholar
  13. Baxter R, Emes MJ, Lee DS (1992) Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. ex. Hoffm. from differently polluted areas. New Phytol 120:265–274CrossRefGoogle Scholar
  14. Belyea LR, Warner BG (1996) Temporal scale and the accumulation of peat in a Sphagnum bog. Can J Bot 74:366–377Google Scholar
  15. Berendse F (1994) Litter decomposability — a neglected component of plant fitness. J Ecol 82:187–190CrossRefGoogle Scholar
  16. Berendse F (1998) Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42:73–88CrossRefGoogle Scholar
  17. Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Funct Ecol 1:293–296Google Scholar
  18. Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans MMPD, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol 7:591–598CrossRefGoogle Scholar
  19. Bobbink R, Heil GW, Raessen MBAG (1992) Atmospheric deposition and canopy exchange processes in heathland ecosystems. Environ Pollut 75:29–37PubMedCrossRefGoogle Scholar
  20. Bonin P, Omnes P, Chalamet A (1998) Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean coast. Hydrobiologia 389:169–182CrossRefGoogle Scholar
  21. Botch MS, Masing VV (1983) Mire ecosystems in the USSR. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 95–152Google Scholar
  22. Botch M, Kobak K, Kolchugina T, Vinson T (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochem Cycles 9:37–46CrossRefGoogle Scholar
  23. Bragazza L, Limpens J (2004). Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Global Biogeochem Cycles 18:GB4018. DOI 10.1029/2004GB002267CrossRefGoogle Scholar
  24. Bragazza L, Gerdol R, Rydin H (2003) Effects of mineral and nutrient input on mire biogeochemistry in two geographical regions. J Ecol 91:417–426CrossRefGoogle Scholar
  25. Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hajkova P, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2004a). Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biol 11:106–114CrossRefGoogle Scholar
  26. Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hàjek M, Grosvernier P, Hansen I, Iacumin P, Gerdol R (2004b). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen depositions in Europe. New Phytol 163:609–116CrossRefGoogle Scholar
  27. Bridgham SD, Pastor J, Janssens JA, Chapin C, Malterer TJ (1996) Multiple limiting gradients in peatlands: A call for a new paradigm. Wetlands 16:45–65Google Scholar
  28. Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561CrossRefGoogle Scholar
  29. Bridgham SD, Pastor J, Updegraff K, Malterer TJ, Johnson K, Harth C, Chen JQ (1999) Ecosystem control over temperature and energy flux in northern peatlands. Ecol Appl 9:1345–1358Google Scholar
  30. Brown DH (1982) Mineral nutrition. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 383–444Google Scholar
  31. Chapin CT, Bridgham SD, Pastor J, Updegraff K (2001) Nitrogen, phosphorus and carbon mineralization in response to nutrient and lime additions in peatlands. Soil Sci 168:409CrossRefGoogle Scholar
  32. Chapman RR, Hemond HF (1982) Dinitrogen fixation by surface peat and Sphagnum in an ombrotrophic bog. Can J Bot 60:5–543Google Scholar
  33. Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 159–224Google Scholar
  34. Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388Google Scholar
  35. Coulson JC, Butterfield J (1978). An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66:631–650CrossRefGoogle Scholar
  36. Crisp DT (1966) Input and output of minerals for an area of Pennine moorland: the importance of precipitation, drainage, peat erosion and animals. J Appl Ecol 3:327–348CrossRefGoogle Scholar
  37. Damman AWH (1978) Distribution and movement of elements in ombotrophic peat bogs. Oikos 30:480–495Google Scholar
  38. Damman AWH (1988). Regulation of nitrogen removal and retention in Sphagnum bogs and other peatlands. Oikos 51:291–305Google Scholar
  39. Damman AWH (1995) Boreal peatlands in Norway and eastern North America: a comparison. Gunneria 43–65Google Scholar
  40. Davey A, Marchant HJ (1983) Seasonal variation in nitrogen fixation by Nostoc commune at the Vestfold Hills Antarctica. Phycologia 22:377–386Google Scholar
  41. Dickinson CH (1983) Micro-organisms in peatlands. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 225–244Google Scholar
  42. Dooley F, Houghton JA (1973) The nitrogen-fixing capacities and occurrence of blue-green algae in peat soils. Bryol Phycol J 8:289–293Google Scholar
  43. Doyle GJ (1973) Primary production estimates of native blanket bog and meadow vegetation growing on reclaimed peat at Glenamoy, Ireland. In: Bliss LC, Wielgolaski FE (eds) Primary production and production processes. Tundra Biome Steering Committee Report, Edmonton, Alberta, Canada, pp 141–151Google Scholar
  44. Fenn ME, Haeuber R, Tonnesen GS, Baron JS, Grossman-Clarke S, Hope D, Jaffe DA, Copeland S, Geiser L, Rueth HM, Sickman JO (2003) Nitrogen emissions, deposition, and monitoring in the western United States. BioScience 53:391–403CrossRefGoogle Scholar
  45. Flechard CR, Fowler D, Sutton MA, Cape JN (1999) A dynamic chemical model of bidirectional ammonia exchange between semi-natural vegetation and the atmosphere. Q J R Meteorol Soc 125:2611–2641CrossRefGoogle Scholar
  46. Forrest GI (1971) Structure and production of northern Pennine blanket bog vegetation. J Ecol 59:453–479CrossRefGoogle Scholar
  47. Forrest GI, Smith RAH (1975) The productivity of a range of blanket bog types in the northern Pennines. J Ecol 63:173–202CrossRefGoogle Scholar
  48. Freeman C, Lock MA, Reynolds B (1993) Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of WT drawdown: potential feedback to climate change. Biogeochemistry 19:51–60CrossRefGoogle Scholar
  49. Gerdol R (1990) Seasonal variations in the element concentrations in mire water and in Sphagnum mosses on an ombrotrophic bog in the southern Alps. Lindbergia 16:44–50Google Scholar
  50. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195Google Scholar
  51. Gorham E, Janssens JA, Glaser PH (2003) Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland with special emphasis on northern Minnesota. Can J Bot 81:429–438CrossRefGoogle Scholar
  52. Granhall U (1970) Acetylene reduction by blue-green algae isolated from Swedish soils. Oikos 21:330–332Google Scholar
  53. Granhall U, Lid-Torsvik V (1975) Nitrogen fixation by bacteria and free-living bluegreen algae in tundra sites. In: Wielgolaski FE (ed) Ecological studies 17. Fennoscandian tundra ecosystems, part II. Animals and systems analysis. Springer, Berlin Heidelberg New York, pp 305–315Google Scholar
  54. Granhall U, Selander H (1973) Nitrogen fixation in a subarctic mire. Oikos 24:8–15Google Scholar
  55. Grigal DF (1985) Sphagnum production in forested bogs of northern Minnesota. Can J Bot 63:1204–1207Google Scholar
  56. Grigal DF, Homann PS (1994) Nitrogen mineralisation, groundwater dynamics, and forest growth on a Minnesota outwash landscape. Biogeochemistry 27:171–185CrossRefGoogle Scholar
  57. Grigal DF, Buttleman CG, Kernik LK (1985) Biomass and productivity of the woody strata of forested bogs in northern Minnesota. Can J Bot 63:2416–2424CrossRefGoogle Scholar
  58. Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537CrossRefGoogle Scholar
  59. Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704CrossRefGoogle Scholar
  60. Gunther AJ (1989) Nitrogen fixation by lichens in a subarctic Alaskan watershed (USA). Bryologist 92:202–208CrossRefGoogle Scholar
  61. Hayward PM, Clymo RS (1982) Profiles of water content and pore size in Sphagnum peat, and their relation to peat bog ecology. Proc R Soc Lond Ser B 215:299–325Google Scholar
  62. Heal OW, Latter PM, Howson G (1978). A study of the rates of decomposition of organic matter. In: Heal OW, Perkins DE (eds) Production ecology of British moors and montane grasslands. Springer, Berlin Heidelberg New York, pp 136–159Google Scholar
  63. Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, van Breemen N (2001a) Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–279CrossRefGoogle Scholar
  64. Heijmans MMPD, Arp WJ, Berendse F (2001b) Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation. Global Change Biol 7:817–827CrossRefGoogle Scholar
  65. Heijmans MMPD, Klees H, De Visser W, Berendse F (2002) Effects of increased nitrogen deposition on the distribution of 15N-labeled nitrogen between Sphagnum and vascular plants. Ecosystems 5:500–508Google Scholar
  66. Heil GW, Werger MJA, Mol de W, Van Dam D, Heijne B (1988) Capture of atmospheric ammonium by grassland canopies. Science 239:764–765CrossRefPubMedGoogle Scholar
  67. Hemond HF (1980) Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecol Monogr 50:507–526CrossRefGoogle Scholar
  68. Hemond HF (1983) The nitrogen budget of Thoreau’s Bog. Ecology 64:99–109CrossRefGoogle Scholar
  69. Hendon D, Charman DJ (2004) High-resolution peatland water-table changes for the past 200 years: the influence of climate and implications for management. Holocene 14:125–134CrossRefGoogle Scholar
  70. Henry GHR, Svoboda J (1986) Dinitrogen fixation (acetylene reduction) in high arctic sedge meadow communities. Arct Alp Res 18:181–187CrossRefGoogle Scholar
  71. Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522CrossRefGoogle Scholar
  72. Hoosbeek MR, van Breemen N, Vasander H, Buttler A, Berendse F (2002) Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biol 8:1130–1138CrossRefGoogle Scholar
  73. Hosker RP, Lindberg SE (1982) Atmospheric deposition and plant assimilation of gases and particles. Atmos Environ 16:889–899CrossRefGoogle Scholar
  74. Jauhiainen J, Vasander H, Silvola J (1994) Response of Sphagnum fuscum to N deposition and increased CO2. J Bryol 18:83–95Google Scholar
  75. Jauhiainen J, Silvola J, Vasander H (1998a) The effects of increased nitrogen deposition and CO2 on Sphagnum angustifolium and S. warnstorfii. Ann Bot Fenn 35:247–256Google Scholar
  76. Jauhiainen J, Wallén B, Malmer N (1998b) Potential NH4 + and NO3 uptake in seven Sphagnum species. New Phytol 138:287–293CrossRefGoogle Scholar
  77. Kalbitz K, Geyer S (2002) Different effects of peat degradation on dissolved organic carbon and nitrogen. Org Geochem 33:319–326CrossRefGoogle Scholar
  78. Kielland K (1997) Role of free amino acids in the nitrogen economy of arctic cryptogams. écoscience 4:75–79Google Scholar
  79. Kielland K (1994) Amino-acid absorption by arctic plants — implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383CrossRefGoogle Scholar
  80. King JY, Reeburgh WS (2002) A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem 34:173–180CrossRefGoogle Scholar
  81. Kivinen E (1933) Suokasvien ja niiden kasvualustan kasvinravintoainesuhteista. Acta Agral Fenn 27:1–140Google Scholar
  82. Kløve B (2001) Characteristics of nitrogen and phosphorus loads in peat mining wastewater. Water Res 10:2362Google Scholar
  83. Koerselman W, Verhoeven JTA (1992) Nutrient dynamics in mires of various trophic status: nutrient inputs and outputs and the internal nutrient cycle. In: Verhoeven JTA (ed) Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and conservation. Kluwer, Dordrecht, pp 397–432Google Scholar
  84. Koerselman W, Van Kerkhoven MB, Verhoeven JTA (1993) Release of inorganic nitrogen, phosphorus and potassium in peat soils: effect of temperature, water chemistry and water level. Biogeochemistry 20:63–81CrossRefGoogle Scholar
  85. Kortelainen P, Saukkonen S (1994) Leaching of organic carbon and nitrogen from forested catchments. Academy of Finland. The Finnish research programme on climate change, second progress report 285–290Google Scholar
  86. Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275CrossRefGoogle Scholar
  87. Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in raised bogs. Global Change Biol 6:583–586CrossRefGoogle Scholar
  88. Lee EJ, Kenkel N, Booth T (1996) Atmospheric deposition of macronutreints by pollen in the boreal forest. écoscience 3:304–309Google Scholar
  89. Li Y, Vitt DH (1997) Patterns of retention and utilisation on aerially deposited nitrogen in boreal peatlands. écoscience 4:106–116Google Scholar
  90. Ligrone R, Duckett JG (1998) The leafy stems of Sphagnum (Bryophyta) contain highly differentiated polarized cells with axial arrays of endoplasmic microtubules. New Phytol 140:567–579CrossRefGoogle Scholar
  91. Limpens J, Berendse F (2003a) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345PubMedGoogle Scholar
  92. Limpens J, Berendse F (2003b) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547CrossRefGoogle Scholar
  93. Limpens J, Berendse F, Klees H (2003a) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347CrossRefGoogle Scholar
  94. Limpens J, Raymakers JTAG, Baar J, Berendse F, Zijlstra JD (2003b) The interactions between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos 103:59–68CrossRefGoogle Scholar
  95. Limpens J, Berendse F, Klees H (2004) How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804CrossRefGoogle Scholar
  96. Lipson DA, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316CrossRefGoogle Scholar
  97. Lovett GM (1992) Atmospheric deposition and canopy interactions of nitrogen. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. Springer, Berlin Heidelberg New York, pp 152–166Google Scholar
  98. Lütt S (1992) Produktionsbiologische Untersuchungen zur Sukzession der Torfstichvegetation in Schleswig-Holstein. Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg. PhD thesis, University of Kiel, GermanyGoogle Scholar
  99. Malmer N (1988) Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos 53:105–120Google Scholar
  100. Malmer N (1990) Constant or increasing nitrogen concentrations in Sphagnum mosses on mires in Southern Sweden during the last few decades. Aquilo Ser Bot 28:57–65Google Scholar
  101. Malmer N, Nihlgård B (1980) Supply and transport of mineral nutrients in a subarctic mire. Ecol Bull 30:63–95Google Scholar
  102. Malmer N, Sjörs H (1955) Some determinations of elementary constituents in mire plants and peats. Bot Not 108:46–80Google Scholar
  103. Malmer N, Wallén B (1993) Accumulation and release of organic matter in ombotrophic hummocks — processes and regional variation. Ecography 16:193–211CrossRefGoogle Scholar
  104. Malmer N, Wallén B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. Holocene 14:111–117CrossRefGoogle Scholar
  105. Malmer N, Svensson BM, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot Phytotaxon 29:483–496Google Scholar
  106. Malmer N, Albinsson C, Svensson BH, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–482CrossRefGoogle Scholar
  107. Martikainen PJ, Nykänen H, Crill PM, Silvola J (1993) Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53CrossRefGoogle Scholar
  108. Martin NJ, Holding AJ (1978) Nutrient availability and other factors limiting microbial activity in the blanket peat. In: Heal OW, Perkins DE (eds) Production ecology of British moors and montane grasslands. Springer, Berlin Heidelberg New York, pp 113–135Google Scholar
  109. Matzner E (1989). Acidic precipitation: case study soiling. In: Adriano DC, Havas M (eds) Acidic precipitation, vol I: case studies. Springer, Berlin Heidelberg New York, pp 39–83Google Scholar
  110. Mauquoy D, Van Geel B, Blaauw M, Speranza A, van der Plicht J (2004). Changes in solar activity and Holocene climatic shifts derived from C-14 wiggle-match dated peat deposits. Holocene 14:45–52CrossRefGoogle Scholar
  111. McFarland JW, Ruess RW, Kielland K, Doyle AP (2002) Cycling dynamics of NH4+ and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems 5:775–788Google Scholar
  112. Michelsen A, Jonasson S, Sleep D, Havström M, Callaghan TV (1996) Shoot biomass, d13C, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climate change. Oecologia 105:1–12CrossRefGoogle Scholar
  113. Millbank JW (1985) Lichens and plant nutrition. Proc R Soc Edinburgh Sect B 85:253–261Google Scholar
  114. Mitchell CE, Gilbert D, Buttler A, Amblard C, Grosvernier P, Gobat JM (2003) Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb Ecol 46:187–199PubMedCrossRefGoogle Scholar
  115. NADP/NTN National Atmospheric Deposition Program (2004). National Atmospheric Deposition Program 2003 Annual Summary. NADP Data report 2004-01. Illinois State Water Survey, Champaign, IL, USAGoogle Scholar
  116. Näsholm T, Edvast A, Ericsson A, Norden L (1994)Accumulation of amino acids in some boreal forest plants in response to increased nitrogen availability. New Phytol 126:137–143CrossRefGoogle Scholar
  117. Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57/58:99–136CrossRefGoogle Scholar
  118. Nordbakken JF, Ohlson M, Högberg P (2003) Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen. Environ Pollut 126:191–200PubMedCrossRefGoogle Scholar
  119. Nordin A, Gunnarsson U (2000) Amino acid accumulation and growth of Sphagnum under different levels of N deposition. écoscience 7:474–480Google Scholar
  120. O’Neill KP (2000) Role of bryophyte-dominated ecosystems in the global carbon budget. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 344–368Google Scholar
  121. Overbeck F, Happach H (1957) über das Wachstum und den Wasserhaushalt einiger Hochmoorsphagnen. Flora Jena 144:335–402Google Scholar
  122. Pakarinen P, Tolonen K (1977) Nutrient contents of Sphagnum mosses in relation to bog water chemistry in northern Finland. Lindbergia 4:27–33Google Scholar
  123. Pearson JD, Wells KJ, Seller A, Bennett A, Soares J, Woodall J, Ingrouille MJ (2000) Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol 147:317–326CrossRefGoogle Scholar
  124. Penner JE, Atherton CS, Dignon J, Ghan SJ, Walton JJ, Hameed S (1991) Tropospheric nitrogen: a three dimensional study of sources, distributions and deposition. J Geophys Res 96:959–990Google Scholar
  125. Pitcairn CER, Fowler D, Grace J (1995) Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environ Pollut 88:193–205CrossRefGoogle Scholar
  126. Press MC, Woodin S, Lee JA (1986) The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic Sphagnum species. New Phytol 103:45–55CrossRefGoogle Scholar
  127. Proctor MCF (1994) Seasonal and shorter-term changes in surface-water chemistry on four English ombrogenous bogs. J Ecol 82:597–610CrossRefGoogle Scholar
  128. Proctor MCF, Maltby E (1998) Relationships between acid atmospheric deposition and the surface pH of some ombrotrophic bogs in Britain. J Ecol 86:329–340CrossRefGoogle Scholar
  129. Reader RJ, Stewart JM (1972) The relationship between net primary production and accumulation for a peatland in southeastern Manitoba. Ecology 53:1024–1037CrossRefGoogle Scholar
  130. Regina K, Silvola J, Martikainen PJ (1999) Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biol 5:183–189CrossRefGoogle Scholar
  131. Richardson CJ (1983) Pocosins: vanishing wastelands or valuable wetlands? Bio-Science 33:626–633Google Scholar
  132. Ro CvU, Vet RJ (2002) Analyzed data fields from the national Atmospheric Chemistry Database (NAtChem) and Analysis facility. Air Quality Research Branch, Meteorological Service of Canada, Environment Canada. Toronto, ONGoogle Scholar
  133. Rochefort L, Vitt DH, Bayley SE (1990). Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71:1986–2000CrossRefGoogle Scholar
  134. Rosswall T, Granhall U (1980) Nitrogen cycling in a subarctic ombrotrophic mire. Ecol Bull 30:209–234Google Scholar
  135. Rosswall T, Veum AK, Kärenlampi L (1975) Plant litter decomposition at Fennoscandian tundra sites. In: Wielgolaski FE (ed) Ecological studies 17. Fennoscandian tundra ecosystems 17, part I. Plants and microorganisms. Springer, Berlin Heidelberg New York, pp 268–278Google Scholar
  136. Rudolph H, Voigt JU (1986) Effects of NH4 +-N and NO3 -N on growth and metabolism of Sphagnum magellanicum. Physiol Plant 66:339–343CrossRefGoogle Scholar
  137. Rydin H, Clymo RS (1989) Transport of carbon and phosphorus compounds about Sphagnum. Proc R Soc Lond Ser B 237:63–84CrossRefGoogle Scholar
  138. Sallantaus T, Kaipainen H (1995) Water-carried element balances of peatlands. In: Laiho R, Laine J, Vasander H (eds) Northern peatlands in global climatic change. Publications of the Academy of Finland 1/96, Helsinki, pp 197–203Google Scholar
  139. Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic, San DiegoGoogle Scholar
  140. Sheridan RP (1991) Nitrogenase activity by Hapalosiphon flexuosus associated with Sphagnum erythrocalyx mats in the cloud forest on the volcano La Soufriere, Guadeloupe, French West Indies. Biotropica 23:134–140CrossRefGoogle Scholar
  141. Sikora LJ, Keeney DR, Gore AJP (1983) Further aspects of soil chemistry under anaerobic conditions. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 247–256Google Scholar
  142. Smith RAH, Forrest GI (1978) Field Estimates of Primary Production. In: Heal OW, Perkins DE (eds) Production ecology of British moors and montane grasslands. Springer, Berlin Heidelberg New York, pp 17–37Google Scholar
  143. Smolders AJP, Tomassen HBM, Lamers LPM, Lomans BP, Roelofs JGM (2002) Peat bog restoration by floating raft formation: the effects of groundwater and peat quality. J Appl Ecol 39:391–401CrossRefGoogle Scholar
  144. Sonesson M (1973) Some chemical characteristics of the Stordalen mire. In: Sonesson M (ed) Progress Report 1972. IBP Swedish Tundra Biome Project technical report, pp 31–43Google Scholar
  145. Steward JM (1974) Blue-green algae. In: Quispel A (ed) The biology of nitrogen fixation. North Holland, Amsterdam, pp 202–237Google Scholar
  146. Stutz RC, Bliss LC (1975) Nitrogen fixation in soils of Truelove Island, Northwest Territories. Can J Bot 53:1387–1399CrossRefGoogle Scholar
  147. Sutton MA, Moncrieff JB, Fowler D (1992) Deposition of atmospheric ammonia to moorlands. Environ Pollut 75:15–24PubMedCrossRefGoogle Scholar
  148. Sutton MA, Pitcairn CER, Fowler D (1993) The exchange of ammonia between atmosphere and plant communities. Adv Ecol Res 24:301–396CrossRefGoogle Scholar
  149. Svensson BH, Rosswall T (1980) Energy flow through the subarctic mire at Stordalen. Ecol Bull 30:283–301Google Scholar
  150. Tarrason L, Jonson JE, Fagerli H, Benedictow A, Wind P, Simpson D, Klein H (2003) Transboundary acidification, eutrofication and ground level ozone in Europe. Part III. Source-receptor relationships. EMEP Status Report 2003. Norwegian Meteorological Institute EMEP/MSC-WGoogle Scholar
  151. Timmons DR, Verry ES, Burwell RE, Holt RF (1977) Nutrient transport in surface runoff and interflow from an aspen-birch forest. J Environ Qual 6:192Google Scholar
  152. Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. J Ecol 91:357–370CrossRefGoogle Scholar
  153. Turunen J, Tahvanainen T, Tolonen K, Pitkanen A (2001) Carbon accumulation in West Siberian mires, Russia. Global Biogeochem Cycles 15:285–296CrossRefGoogle Scholar
  154. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland — application to boreal and subarctic regions. Holocene 12:69–80CrossRefGoogle Scholar
  155. Twenhöven FL (1992) Competition between two Sphagnum species under different deposition levels. J Bryol 17:71–80Google Scholar
  156. Updegraff K, Pastor J, Bridgham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163Google Scholar
  157. Urban NR (1983) The nitrogen cycle in a forested bog watershed in northern Minnesota. PhD thesis University of Minnesota, MinneapolisGoogle Scholar
  158. Urban NR, Eisenreich SJ (1988) Nitrogen cycling in a forested Minnesota bog. Can J Bot 66:435–449Google Scholar
  159. Urban NR, Eisenreich SJ, Bayley SE (1988) The relative importance of denitrification and nitrate assimilation in midcontinental bogs. Limnol Oceanogr 33:1611–1617CrossRefGoogle Scholar
  160. van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275CrossRefGoogle Scholar
  161. van Breemen N, Burrough PA, Velthorst EJ, Van Dobben HF, De Wit T, Ridder TB, Reynders HFR (1982) Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 22:548–550CrossRefGoogle Scholar
  162. van der Heijden E, Verbeek SK, Kuiper PJC (2000) Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biol 6:201–212CrossRefGoogle Scholar
  163. van Oene H, Berendse F, De Kovel CGF (1999) Model analysis of the effects of historic CO2 levels and nitrogen inputs on vegetation succession. Ecol Appl 9:920–935Google Scholar
  164. van Vuuren M, Berendse F (1993) Changes in soil organic matter and net nitrogen mineralization in heathland soils, after removal, addition or replacement of litter from Erica tetralix or Molinia caerulea. Biol Fertil Soils 15:268–274CrossRefGoogle Scholar
  165. van Wijk MT, Williams M, Gough L, Hobbie SE, Shaver GR (2003) Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J Ecol 91:644–676CrossRefGoogle Scholar
  166. Vardy SR, Warner BG, Turunen J, Aravena R (2000) Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada. Holocene 10:273–280CrossRefGoogle Scholar
  167. Vasander H (1981) Keidäsrameen kasvibiomassaja tuotos. Suo 32:94Google Scholar
  168. Verhoeven JTA, Koerselman W, Beltman B (1988) The vegetation of fens in relation to their hydrology and nutrient dynamics; a case study. In: Symoens JJ (ed) Vegetation of inland waters. Handbook of vegetation science 15. Kluwer, Dordrecht, pp 249–282Google Scholar
  169. Verhoeven JTA, Keuter A, Van Logtestijn R, Van Kerkhoven MB, Wassen M (1996) Control of local nutrient dynamics in mires by regional and climatic factors: a comparison of Dutch and Polish sites. J Ecol 84:647–656CrossRefGoogle Scholar
  170. Verry ES (1975) Streamflow chemistry and nutrient yields from upland-peatland watersheds in Minnesota. Ecology 56:1157CrossRefGoogle Scholar
  171. Verry ES, Timmons DR (1982) Waterborne nutrientflow through an upland-peatland watershed in Minnesota. Ecology 63:1456–1467CrossRefGoogle Scholar
  172. Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572CrossRefGoogle Scholar
  173. Vitt DH, Wieder RK, Halsey LA, Turetsky MR (2003) Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist 106:235–245CrossRefGoogle Scholar
  174. Vuorenmaa J (2004) Long-term changes of acidifying deposition in Finland (1973–2000). Environ Pollut 128:351–362PubMedCrossRefGoogle Scholar
  175. Wallén B (1986) Above and below ground dry mass of the three main vascular plants on hummocks on a subarctic peat bog. Oikos 46:51–56Google Scholar
  176. Wallén B (1987) Growth pattern and distribution of biomass of Calluna vulgaris on an ombrotrophic peat bog. Holarct Ecol 10:73–79Google Scholar
  177. Wallén B (1992) Methods for studying below-ground production in mire ecosystems. Suo 43:155–162Google Scholar
  178. Waughman GJ (1980) Chemical aspects of the ecology of some south German oeatlands. J Ecol 68:1025–1046CrossRefGoogle Scholar
  179. Waughman GJ, Bellamy DJ (1980) Nitrogen fixation and the nitrogen balance in peatland ecosystems. Ecology 61:1185–1198CrossRefGoogle Scholar
  180. Wein RW, Bliss LC (1974) Primary productivity of alpine meadow communities. Arct Alp Res 6:261–274CrossRefGoogle Scholar
  181. Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478CrossRefGoogle Scholar
  182. Weltzin JF, Bridgham SD, Pastor J, Chen JQ, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Global Change Biol 9:141–151CrossRefGoogle Scholar
  183. Wielgolaski FE, Kjelvik S, Kallio P (1975) Mineral content of tundra and forest tundra plants in Fennoscandia. In: Wielgolaski FE (ed) Ecological studies 17. Fennoscandian tundra ecosystems, part II. Animals and systems analysis. Springer, Berlin Heidelberg New York, pp 316–332Google Scholar
  184. Williams BL, Silcock DJ (1997) Nutrient and microbial changes in the peat profile beneath Sphagnum magellanicum in response to additions of ammonium nitrate. J Appl Ecol 34: 961–970CrossRefGoogle Scholar
  185. Williams BL, Silcock DJ (2000) Impact of NH4NO3 on microbial biomass C and N and extractable DOM in raised bog peat beneath Sphagnum capillifolium and S. recurvum. Biogeochemistry 49:259–276CrossRefGoogle Scholar
  186. Williams BL, Wheatley RE (1989) Nitrogen transformations in poorly-drained reseeded blanket peat under different management systems. Int Peat J 3:97–106Google Scholar
  187. Williams BL, Silcock DJ, Young M (1999a) Seasonal dynamics of N in two Sphagnum moss species and underlying peat treated with 15NH4 15NO3. Biogeochemistry 45:285–302Google Scholar
  188. Williams BL, Buttler A, Grosvernier P, Francez AJ, Gilbert D, Ilomets M, Jauhiainen J, Matthey Y, Silcock DJ, Vasander H (1999b) The fate of NH4NO3 added to Sphagnum magellanicum carpets at five European mire sites. Biogeochemistry 45:73–93Google Scholar
  189. Woodin S, Lee JA (1987) The fate of some components of acidic deposition in ombrotrophic mires. Environ Pollut 45:61–72PubMedCrossRefGoogle Scholar
  190. Yelina GA (1974) Biological productivity of Karelian peatlands. Proceedings of the international symposium on forest drainage, Oulu, Jyväskylä, Finland, pp 71–79Google Scholar
  191. Zoltai SC, Siltanen RM, Johnson JD (2000) A wetland database for the western boreal, subarctic and arctic regions of Canada. Natural Resources Canada. Northern Forestry Centre, information report. Report no NOR-X-368, Edmonton, Alberta, CanadaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juul Limpens
    • 1
  • Monique M. P. D. Heijmans
    • 1
  • Frank Berendse
    • 1
  1. 1.Nature Conservation and Plant Ecology Group, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations