Skip to main content

Path Relinking in Pareto Multi-objective Genetic Algorithms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

Path relinking algorithms have proved their efficiency in single objective optimization. Here we propose to adapt this concept to Pareto optimization. We combine this original approach to a genetic algorithm. By applying this hybrid approach to a bi-objective permutation flow-shop problem, we show the interest of this approach.

In this paper, we present first an Adaptive Genetic Algorithm dedicated to obtain a first well diversified approximation of the Pareto set. Then, we present an original hybridization with Path Relinking algorithm, in order to intensify the search between solutions obtained by the first approach. Results obtained are promising and show that cooperation between these optimization methods could be efficient for Pareto optimization.

Keywords

  • Pareto Front
  • Multiobjective Optimisation
  • Pareto Solution
  • Scatter Search
  • Total Tardiness

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary algorithms for solving Multi-Objective Problems. Kluwer, New York (2002)

    MATH  Google Scholar 

  2. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  3. Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D. (eds.): EMO 2001. LNCS, vol. 1993. Springer, Heidelberg (2001)

    Google Scholar 

  4. Reeves, C., Yamada, T.: Genetic algorithms, path relinking and the flowshop sequencing problem. Evolutionary Computation 6(1), 230–234 (1998)

    CrossRef  Google Scholar 

  5. Sayin, S., Karabati, S.: A bicriteria approach to the two-machine flow shop scheduling problem. European journal of operational research, 435–449 (1999)

    Google Scholar 

  6. Rajendran, C.: Heuristics for scheduling in flowshop with multiple objectives. European journal of operational research, 540–555 (1995)

    Google Scholar 

  7. Nagar, A., Haddock, J., Heragu, S.: Multiple and bicriteria scheduling: A litterature survey. European journal of operational research, 88–104 (1995)

    Google Scholar 

  8. Sivrikaya, F., Ulusoy, G.: A bicriteria two-machine permutation flowshop problem. European journal of operational research, 414–430 (1998)

    Google Scholar 

  9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Annals of Discrete Mathematics, vol. 5, pp. 287–326 (1979)

    Google Scholar 

  10. Lenstra, J.K., Kan, A.H.G.R., Brucker, P.: Complexity of machine scheduling problems. Annals of Discrete Mathematics 1, 343–362 (1977)

    CrossRef  Google Scholar 

  11. Kim, Y.-D.: Minimizing total tardiness in permutation flowshops. European Journal of Operational Research 33, 541–551 (1995)

    CrossRef  Google Scholar 

  12. Du, J., Leung, J.Y.-T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of operations research 15, 483–495 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operations Research 64, 278–285 (1993)

    CrossRef  MATH  Google Scholar 

  14. Talbi, E.G., Rahoual, M., Mabed, M.H., Dhaenens, C.: A hybrid evolutionary approach for multicriteria optimization problems: Application to the flow shop. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 416–428. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  15. Srinivas, N., Deb, K.: Multiobjective optimisation using non-dominated sorting in genetics algorithms. In: Evolutionary Computation, vol. 2, p. 221 (1994)

    Google Scholar 

  16. Basseur, M., Seynhaeve, F., Talbi, E.-G.: Design of multi-objective evolutionary algorithms: Application to the flow-shop scheduling problem. In: Congress on Evolutionary Computation (CEC2002), Honolulu, Hawaii, USA, pp. 1151–1156 (2002)

    Google Scholar 

  17. Hong, T.-P., Wang, H.-S., Chen, W.-C.: Simultaneous applying multiple mutation operators in genetic algorithm. Journal of Heuristics 6, 439–455 (2000)

    CrossRef  MATH  Google Scholar 

  18. Basseur, M., Seynhaeve, F., Talbi, E.-G.: Adaptive mechanisms for multi-objective evolutionary algorithms. In: Congress on Engineering in System Application (CESA 2003), Lille, France, pp. 72–86 (2003)

    Google Scholar 

  19. Glover, F.: Tabu search and adaptive memory programing advances, applications and challenges. In: Interfaces in Computer Science and Operations Research (96), pp. 1–75. Kluwer Academic Publishers, Boston

    Google Scholar 

  20. Glover, F., Laguna, M.: Fundamentals of scatter search and path relinking. Control and Cybernetics 29, 653–684 (1999)

    MathSciNet  Google Scholar 

  21. Beausoleil, R.P.: Multiple Criteria Scatter Search. In: 4th Metaheuritics International Congress, Porto, Portugal, pp. 539–543 (2001)

    Google Scholar 

  22. Gandibleux, X., Morita, H., Katoh, N.: Impact of clusters, path-relinking and mutation operators on the heuristic using a genetic heritage for solving assignment problems with two objectives. In: Metaheuristics International Conference (MIC 2003), Kyoto, Japan, vol. 23(1–6) (2003)

    Google Scholar 

  23. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: 15. In: Introduction to algorithms, pp. 350–355. The MIT Press, Cambridge (1990)

    Google Scholar 

  24. Meunier, H., Talbi, E.G., Reininger, P.: A multiobjective genetic algorithm for radio network optimisation. In: CEC, Piscataway, New Jersey, vol. 1, pp. 317–324. IEEE Service Center (2000)

    Google Scholar 

  25. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications. Master’s thesis, Swiss federal Institute of technology (ETH), Zurich, Switzerland (1999)

    Google Scholar 

  26. Knowles, J.D., Corne, D.W.: On metrics for comparing non-dominated sets. In: Center, I.S. (ed.) Congress on Evolutionary Computation (CEC’2002), Piscataway, New Jersey, vol. 1, pp. 711–716 (2002)

    Google Scholar 

  27. Lemesre, J., Dhaenens, C., Talbi, E.G.: A parallel exact method for a bicriteria permutation flow-shop problem. In: Project Management and Scheduling (PMS 2004), Nancy, France, pp. 359–362 (2004)

    Google Scholar 

  28. Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: a framework for the flexible design of parallel and distributed hybrid metaheuristics. Journal of Heuristics 10, 357–380 (2004)

    CrossRef  Google Scholar 

  29. Basseur, M.: Cooperative models for multi-objective optimization. PhD thesis, University of Lille (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Basseur, M., Seynhaeve, F., Talbi, EG. (2005). Path Relinking in Pareto Multi-objective Genetic Algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics