Skip to main content

The Combative Accretion Model – Multiobjective Optimisation Without Explicit Pareto Ranking

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

Contemporary evolutionary multiobjective optimisation techniques are becoming increasingly focussed on the notions of archiving, explicit diversity maintenance and population-based Pareto ranking to achieve good approximations of the Pareto front. While it is certainly true that these techniques have been effective, they come at a significant complexity cost that ultimately limits their application to complex problems. This paper proposes a new model that moves away from explicit population-wide Pareto ranking, abandons both complex archiving and diversity measures and incorporates a continuous accretion-based approach that is divergent from the discretely generational nature of traditional evolutionary algorithms. Results indicate that the new approach, the Combative Accretion Model (CAM), achieves markedly better approximations than NSGA across a range of well-recognised test functions. Moreover, CAM is more efficient than NSGAII with respect to the number of comparisons (by an order of magnitude), while achieving comparable, and generally preferable, fronts.

Keywords

  • Pareto Front
  • Successful Agent
  • Pareto Optimal Front
  • Multiobjective Evolutionary Algorithm
  • Agent Size

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic, New York (2002)

    MATH  Google Scholar 

  2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  3. Srinivas, N., Deb, K.: Multiobjective Optimization using Non-dominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    CrossRef  Google Scholar 

  4. Fonesca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Genetic Algorithms: Proceedings of the Fifth International Conference, San Mateo, CA (1993)

    Google Scholar 

  5. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Multi-Objective Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Proceedings of the Parallel Problem Solving from Nature Conference VI, pp. 849–858 (2000)

    Google Scholar 

  6. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. LNCS. Springer, Heidelberg (1999)

    Google Scholar 

  7. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization. Evolutionary Methods for Design, Optimization and Control (2002)

    Google Scholar 

  8. Knowles, J., Corne, D.: The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multiobjective Optimisation. In: Proceedings of the Congress on Evolutionary Computation, IEEE Press, Washington (1999)

    Google Scholar 

  9. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto-Envelope based Selection Algorithm for Multiobjective Optimisation. PPSN VI, 869–878 (2000)

    Google Scholar 

  10. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-Based Selection in Evolutionary Multiobjective Optimization. In: Proceedings of GECCO (2001)

    Google Scholar 

  11. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Proceedings of the First CEC (1994)

    Google Scholar 

  12. Zitzler, E., Thiele, L., Deb, K.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. In: 1999 Genetic and Evolutionary Computation Conference (1999)

    Google Scholar 

  13. Jensen, M.T.: Reducing the Run-time Complexity of Multi-Objective EAs: The NSGA-II and Other Algorithms. IEEE Transactions on Evolutionary Computation 7(5) (2003)

    Google Scholar 

  14. Socha, K., Kisiel-Dorohinicki, M.: Agent-Based Evolutionary Multiobjective Optimisation. In: Proceedings of CEC 2002 - Congress on Evolutionary Computation (2002)

    Google Scholar 

  15. Laumanns, M., Rudolph, G., Schwefel, H.-P.: A Spatial Predator-Prey Approach to Multi-Objective Optimization: a Preliminary Study. In: PPSN V (1998)

    Google Scholar 

  16. Berry, A., Vamplew, P.: A Simplified Artificial Life Model for Multiobjective Optimisation: A Preliminary Report. In: The Congress on Evolutionary Computation (CEC), Canberra, ACT (2003)

    Google Scholar 

  17. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combing Convergence and Diversity in Evolutionary Multi-Objective Optimization. Evolutionary Computation 10(3) (2002)

    Google Scholar 

  18. Knowles, J.D., Corne, D.W.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7(2) (2003)

    Google Scholar 

  19. Horn, J.: Multicriterion Decision Making. In: Handbook of Evolutionary Computation (1997)

    Google Scholar 

  20. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Optimization with Messy Genetic Algorithms. In: Symposium on Applied Computing, pp. 470–476 (2000)

    Google Scholar 

  21. Zydallis, J.B., Van Veldhuizen, D.A., Lamont, G.: A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, p. 226. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  22. Okabe, T., Jin, Y., Sendhoff, B.: A Critical Survey of Performance Indices for Multi-Objective Optimisation. In: Congress on Evolutionary Computation, Canberra (2003)

    Google Scholar 

  23. Zitzler, E., Thiele, L., Laumanns, M., Fonesca, C.M., Grunert de Fonesca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation (2002) (Accepted for Publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, A., Vamplew, P. (2005). The Combative Accretion Model – Multiobjective Optimisation Without Explicit Pareto Ranking. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics