Skip to main content

An EMO Algorithm Using the Hypervolume Measure as Selection Criterion

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3410))

Included in the following conference series:

Abstract

The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered. We also studied the applicability of the new approach in the important field of design optimization. In order to reduce the number of time consuming precise function evaluations, the algorithm will be supported by approximate function evaluations based on Kriging metamodels. First results on an airfoil redesign problem indicate a good performance of this approach, especially if the computation of a small, bounded number of well-distributed solutions is desired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  2. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

    MATH  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Study. In: Eiben, A.E. (ed.) Parallel Problem Solving from Nature V, Amsterdam, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Fleischer, M.: The Measure of Pareto Optima. Applications to Multi-objective Metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7, 100–116 (2003)

    Article  Google Scholar 

  6. Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded Archiving using the Lebesgue Measure. In: Proceedings of the, Congress on Evolutionary Computation (CEC’2003), vol. 4, pp. 2490–2497. IEEE Press, Canberra (2003)

    Chapter  Google Scholar 

  7. Knowles, J., Corne, D.: On Metrics for Comparing Nondominated Sets. In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, vol. 1, pp. 711–716. IEEE Service Center (2002)

    Google Scholar 

  8. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)

    Google Scholar 

  9. Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Deb, K., Mohan, M., Mishra, S.: A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL report 2003002, Indian Institute of Technology, Kanpur, India (2003)

    Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  12. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  13. Naujoks, B., Willmes, L., Bäck, T., Haase, W.: Evaluating multi-criteria evolutionary algorithms for airfoil optimisation. In: Guervós, J.J.M., Adamidis, P., Beyer, H.G., Fernández-Villacañas, J.L., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature – PPSN VII, Proc. Seventh Int’l Conf., Granada, Berlin, pp. 841–850. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Emmerich, M., Naujoks, B.: Metamodel assisted multiobjective optimisation strategies and their application in airfoil design. In: Parmee, I.C. (ed.) Adaptive Computing in Design and Manufacture VI, pp. 249–260. Springer, London (2004)

    Chapter  Google Scholar 

  15. Sacks, J., Welch, W.J., Mitchell, W.J., Wynn, H.P.: Design and analysis of computer experiments. Statistical Science 4, 409–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emmerich, M., Beume, N., Naujoks, B. (2005). An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics