Skip to main content

Multiobjective EA Approach for Improved Quality of Solutions for Spanning Tree Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

The problem of computing spanning trees along with specific constraints is mostly NP-hard. Many approximation and stochastic algorithms which yield a single solution, have been proposed. In this paper, we formulate the generic multi-objective spanning tree (MOST) problem and consider edge-cost and diameter as the two objectives. Since the problem is hard, and the Pareto-front is unknown, the main issue in such problem-instances is how to assess the convergence. We use a multiobjective evolutionary algorithm (MOEA) that produces diverse solutions without needing a priori knowledge of the solution space, and generate solutions from multiple tribes in order to assess movement of the solution front. Since no experimental results are available for MOST, we consider three well known diameter-constrained minimum spanning tree (dc-MST) algorithms including randomized greedy heuristics (RGH) which represents the current state of the art on the dc-MST, and modify them to yield a (near-) optimal solution-fronts. We quantify the obtained solution fronts for comparison. We observe that MOEA provides superior solutions in the entire-range of the Pareto-front, which none of the existing algorithms could individually do.

Keywords

  • Span Tree
  • Pareto Front
  • Multiobjective Optimization
  • Network Design Problem
  • Span Tree Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garey, M.R., Johnson, D.S.: Computers and Interactability: A Guide to the Theory of NP- Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  2. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS, Boston (1997)

    Google Scholar 

  3. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Bicriteria Network Design Problems. J. Algorithms 28, 142–171 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Approximation Algorithms for Degree-Constrained Minimum-Cost Network Design Problems. Algorithmica 31, 58–78 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Boldon, N., Deo, N., Kumar, N.: Minimum-Weight Degree-Constrained Spanning Tree Problem: Heuristics and Implementation on an SIMD Parallel Machine. Parallel Computing 22, 369–382 (1996)

    CrossRef  MATH  Google Scholar 

  6. Deo, N., Kumar, N.: Constrained Spanning Tree Problems: Approximate Methods and Parallel Computations. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Math Society 40, 191–217 (1998)

    MathSciNet  Google Scholar 

  7. Deo, N., Abdalla, A.: Computing a Diameter-Constrained Minimum Spanning Tree in Parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  8. Deo, N., Micikevicius, P.: Comparison of Prüfer-like Codes for Labeled Trees. In: Proc. 32nd South-Eastern Int. Conf. Combinatorics, Graph Theory and Computing (2001)

    Google Scholar 

  9. Raidl, G.R., Julstrom, B.A.: Greedy Heuristics and an Evolutionary Algorithm for the Bounded-Diameter Minimum Spanning Tree Problem. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 747–752. Springer, Heidelberg (2004)

    Google Scholar 

  10. Julstrom, B.A., Raidl, G.R.: Edge Sets: An Effective Evolutionary Coding of Spanning Trees. IEEE Trans. Evolutionary Computation 7, 225–239 (2003)

    CrossRef  Google Scholar 

  11. Knowles, J.D., Corne, D.W.: A New Evolutionary Approach to the Degree-Constrained Minimum Spanning Tree Problem. IEEE Trans. Evolutionary Computation 4, 125–133 (2000)

    CrossRef  Google Scholar 

  12. Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multiobjective Minimum Spanning Tree Problems. In: Proc. 2001 Congress on Evolutionary Computation (CEC-2001), vol. 1, pp. 544–551 (2001)

    Google Scholar 

  13. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multiojective Problem. Kluwer, Boston (2002)

    Google Scholar 

  14. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    Google Scholar 

  15. Coello, C.A.C., Lamont, G.B.: Applications of Multiojective Evolutionary Algorithms. World Scientific, Singapore (2004)

    Google Scholar 

  16. Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-front in Multiobjective Genetic Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10, 283–314 (2002)

    CrossRef  Google Scholar 

  17. Kumar, R., Rockett, P.I.: Assessing the Convergence of Rank-based Multiobjective Genetic Algorithms. In: Proc. 2nd IEE/IEEE Int. Conf. Genetic Algorithms in Engineering Systems: Innovations and Applications (Galesia 1997), vol. I446, pp. 19–23. IEE, London (1997)

    Google Scholar 

  18. Kumar, R., Singh, P.K., Chakrabarti, P.P.: Multiobjective Genetic Search for Spanning Tree Problem. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 218–223. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  19. Kumar, R., Singh, P.K., Chakrabarti, P.P.: Improved Quality of Solutions for Multiobjective Spanning Tree Problem Using EA. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004. LNCS, vol. 3296, pp. 494–503. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  20. Purshouse, R.C., Fleming, P.J.: Elitism, Sharing and Ranking Choices in Evolutionary Multi- criterion Optimization. Research Report No. 815, Dept. Automatic Control & Systems Engineering, University of Sheffield (2002)

    Google Scholar 

  21. Deb, K.: A Fast Non-Dominated Sorting Genetic Algorithm for Multiobjective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Proc. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, EUROGEN (2001)

    Google Scholar 

  23. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation 10, 263–282 (2002)

    CrossRef  Google Scholar 

  24. Hansen, M.P., Jaszkiewicz, A.: Evaluating the Quality of Approximations to the Non-dominated Set. Tech. Rep. IMM-REP-1998-7, Tech. Univ. Denmark (1998)

    Google Scholar 

  25. Zitzler, E.: Evoluationary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (1999)

    Google Scholar 

  26. van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analysis, and New Innovations. Ph.D. Thesis, Technical Report No. AFIT/DS/ENG/99-01, Air Force Institute of Technology, Dayton, OH (1999)

    Google Scholar 

  27. Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithms. Masters Thesis, Department of Aeronautics and Astronautics, MIT, Massachusetts (1995)

    Google Scholar 

  28. Deb, K., Jain, S.: Running Performance Metrics for Evolutionary Multiobjective Optimization. In: Proc. 4th Asia-Pacific Conf. Simulated Evoluation and Learning (SEAL 2002), Singapore, pp. 13–20 (2002)

    Google Scholar 

  29. Knowles, J., Corne, D.: On Metrics for Comparing Nondominated Sets. In: Proc. Congress Evolutionary Computation (CEC 2002), vol. I, pp. 711–716. IEEE Computer Society Press, Piscataway (2002)

    CrossRef  Google Scholar 

  30. Zohu, G., Gen, M.: Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European J. Operations Research 114, 141–152 (1999)

    CrossRef  Google Scholar 

  31. Soak, S.M., Corne, D., Ahn, B.H.: A powerful new encoding for tree-based combinatorial optimisation problems. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 430–439. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  32. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, R., Singh, P.K., Chakrabarti, P.P. (2005). Multiobjective EA Approach for Improved Quality of Solutions for Spanning Tree Problem. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics