Abstract
The problem of computing spanning trees along with specific constraints is mostly NP-hard. Many approximation and stochastic algorithms which yield a single solution, have been proposed. In this paper, we formulate the generic multi-objective spanning tree (MOST) problem and consider edge-cost and diameter as the two objectives. Since the problem is hard, and the Pareto-front is unknown, the main issue in such problem-instances is how to assess the convergence. We use a multiobjective evolutionary algorithm (MOEA) that produces diverse solutions without needing a priori knowledge of the solution space, and generate solutions from multiple tribes in order to assess movement of the solution front. Since no experimental results are available for MOST, we consider three well known diameter-constrained minimum spanning tree (dc-MST) algorithms including randomized greedy heuristics (RGH) which represents the current state of the art on the dc-MST, and modify them to yield a (near-) optimal solution-fronts. We quantify the obtained solution fronts for comparison. We observe that MOEA provides superior solutions in the entire-range of the Pareto-front, which none of the existing algorithms could individually do.
Keywords
- Span Tree
- Pareto Front
- Multiobjective Optimization
- Network Design Problem
- Span Tree Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Garey, M.R., Johnson, D.S.: Computers and Interactability: A Guide to the Theory of NP- Completeness. Freeman, San Francisco (1979)
Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS, Boston (1997)
Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Bicriteria Network Design Problems. J. Algorithms 28, 142–171 (1998)
Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Approximation Algorithms for Degree-Constrained Minimum-Cost Network Design Problems. Algorithmica 31, 58–78 (2001)
Boldon, N., Deo, N., Kumar, N.: Minimum-Weight Degree-Constrained Spanning Tree Problem: Heuristics and Implementation on an SIMD Parallel Machine. Parallel Computing 22, 369–382 (1996)
Deo, N., Kumar, N.: Constrained Spanning Tree Problems: Approximate Methods and Parallel Computations. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Math Society 40, 191–217 (1998)
Deo, N., Abdalla, A.: Computing a Diameter-Constrained Minimum Spanning Tree in Parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)
Deo, N., Micikevicius, P.: Comparison of Prüfer-like Codes for Labeled Trees. In: Proc. 32nd South-Eastern Int. Conf. Combinatorics, Graph Theory and Computing (2001)
Raidl, G.R., Julstrom, B.A.: Greedy Heuristics and an Evolutionary Algorithm for the Bounded-Diameter Minimum Spanning Tree Problem. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 747–752. Springer, Heidelberg (2004)
Julstrom, B.A., Raidl, G.R.: Edge Sets: An Effective Evolutionary Coding of Spanning Trees. IEEE Trans. Evolutionary Computation 7, 225–239 (2003)
Knowles, J.D., Corne, D.W.: A New Evolutionary Approach to the Degree-Constrained Minimum Spanning Tree Problem. IEEE Trans. Evolutionary Computation 4, 125–133 (2000)
Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multiobjective Minimum Spanning Tree Problems. In: Proc. 2001 Congress on Evolutionary Computation (CEC-2001), vol. 1, pp. 544–551 (2001)
Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multiojective Problem. Kluwer, Boston (2002)
Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)
Coello, C.A.C., Lamont, G.B.: Applications of Multiojective Evolutionary Algorithms. World Scientific, Singapore (2004)
Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-front in Multiobjective Genetic Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10, 283–314 (2002)
Kumar, R., Rockett, P.I.: Assessing the Convergence of Rank-based Multiobjective Genetic Algorithms. In: Proc. 2nd IEE/IEEE Int. Conf. Genetic Algorithms in Engineering Systems: Innovations and Applications (Galesia 1997), vol. I446, pp. 19–23. IEE, London (1997)
Kumar, R., Singh, P.K., Chakrabarti, P.P.: Multiobjective Genetic Search for Spanning Tree Problem. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 218–223. Springer, Heidelberg (2004)
Kumar, R., Singh, P.K., Chakrabarti, P.P.: Improved Quality of Solutions for Multiobjective Spanning Tree Problem Using EA. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004. LNCS, vol. 3296, pp. 494–503. Springer, Heidelberg (2004)
Purshouse, R.C., Fleming, P.J.: Elitism, Sharing and Ranking Choices in Evolutionary Multi- criterion Optimization. Research Report No. 815, Dept. Automatic Control & Systems Engineering, University of Sheffield (2002)
Deb, K.: A Fast Non-Dominated Sorting Genetic Algorithm for Multiobjective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Proc. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, EUROGEN (2001)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation 10, 263–282 (2002)
Hansen, M.P., Jaszkiewicz, A.: Evaluating the Quality of Approximations to the Non-dominated Set. Tech. Rep. IMM-REP-1998-7, Tech. Univ. Denmark (1998)
Zitzler, E.: Evoluationary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (1999)
van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analysis, and New Innovations. Ph.D. Thesis, Technical Report No. AFIT/DS/ENG/99-01, Air Force Institute of Technology, Dayton, OH (1999)
Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithms. Masters Thesis, Department of Aeronautics and Astronautics, MIT, Massachusetts (1995)
Deb, K., Jain, S.: Running Performance Metrics for Evolutionary Multiobjective Optimization. In: Proc. 4th Asia-Pacific Conf. Simulated Evoluation and Learning (SEAL 2002), Singapore, pp. 13–20 (2002)
Knowles, J., Corne, D.: On Metrics for Comparing Nondominated Sets. In: Proc. Congress Evolutionary Computation (CEC 2002), vol. I, pp. 711–716. IEEE Computer Society Press, Piscataway (2002)
Zohu, G., Gen, M.: Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European J. Operations Research 114, 141–152 (1999)
Soak, S.M., Corne, D., Ahn, B.H.: A powerful new encoding for tree-based combinatorial optimisation problems. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 430–439. Springer, Heidelberg (2004)
Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kumar, R., Singh, P.K., Chakrabarti, P.P. (2005). Multiobjective EA Approach for Improved Quality of Solutions for Spanning Tree Problem. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_56
Download citation
DOI: https://doi.org/10.1007/978-3-540-31880-4_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24983-2
Online ISBN: 978-3-540-31880-4
eBook Packages: Computer ScienceComputer Science (R0)
