Skip to main content

Finding Pareto-Optimal Set by Merging Attractors for a Bi-objective Traveling Salesmen Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

This paper presents a new search procedure to tackle multi-objective traveling salesman problem (TSP). This procedure constructs the solution at-tractor for each of the objectives respectively. Each attractor contains the best solutions found for the corresponding objective. Then, these attractors are merged to find the Pareto-optimal solutions. The goal of this procedure is not only to generate a set of Pareto-optimal solutions, but also to provide the infor-mation about these solutions that will allow a decision-maker to choose a good compromise solution.

Keywords

  • Local Search
  • Multiobjective Optimization
  • Travel Salesman Problem
  • Travel Salesman Problem
  • Local Search Algorithm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel, E., Bampis, E., Gourvès, L.: A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 153–176. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Borges, P.C., Hansen, M.P.: A Study of Global Convexity for a Multiple Objective Traveling Salesman Problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 129–150. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  3. Boese, K.D., Kahng, A.B., Muddu, S.: A New Adaptive Multistart Technique for Combinatorial Global Optimizations. Operations Research Letters 16(2), 101–113 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Collette, Y., Siarry, P.: Multiobjective Optimization – Principles and Case Studies. Springer, Berlin (2003)

    Google Scholar 

  5. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Ehrgott, M.: Approximation Algorithms for Combinatorial Multi-Criteria Problems. International Transactions in Operations Research 7, 5–31 (2000)

    CrossRef  MathSciNet  Google Scholar 

  7. Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization. OR Spectrum 22(4), 425–460 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Fisher, R., Richter, K.: Solving a Multiobjective Traveling Salesman Problem by Dynamic Programming. Mathematische Operationsforschung und Statistik, Series Optimization 13(2), 247–252 (1982)

    MathSciNet  Google Scholar 

  9. Gupta, A., Warburton, A.: Approximation Methods for Multiple Criteria Traveling Salesman Problems. In: Sawaragi, Y. (ed.) Towards Interactive and Intelligent Decision Support Systems: Proceedings of the 7th International Conference on Multiple Criteria Decision Making, pp. 211–217. Springer, Berlin (1986)

    Google Scholar 

  10. Hansen, M.P.: Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristics: The Case of MOTSP. Journal of Heuristics 6, 419–431 (2000)

    CrossRef  MATH  Google Scholar 

  11. Jaszkiewicz, A.: Genetic Local Search for Multiple Objective Combinatorial Optimization. European Journal of Operational Research 137(1), 50–71 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Li, W.: Attractor of Local Search in the Traveling Salesman Problem. Journal of Heuristics (Forthcoming)

    Google Scholar 

  13. Lin, S.: Computer Solutions to the Traveling Salesman Problem. Bell Systems Technical Journal 44, 2245–2269 (1965)

    MATH  Google Scholar 

  14. Melamed, I.I., Sigal, I.K.: The Linear Convolution of Criteria in the Bicriteria Traveling Salesman Problem. Computational Mathematics and Mathematical Physics 37(8), 902–905 (1997)

    MathSciNet  Google Scholar 

  15. Mezard, M., Parisi, G.: A Replica Analysis of the Traveling Salesman Problem. Journal of Physique 47, 1285–1296 (1986)

    CrossRef  Google Scholar 

  16. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  17. Paquete, L., Chiarandini, M., Stützle, T.: Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer, Berlin (2004)

    CrossRef  Google Scholar 

  18. Paquete, L., Stützle, T.: A Two Phase Local Search for the Biobjective Traveling Salesman Problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  19. Raidl, G.R., Kogydek, G., Julstrom, B.A.: On Weight-Biased Mutation for Graph Problems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 204–213. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  20. Sigal, I.K.: Algorithm for Solving the Two-Criterion Large-scale Traveling Salesman Problem. Computational Mathematics and Mathematical Physics 34(1), 33–43 (1994)

    MathSciNet  Google Scholar 

  21. Steuer, R.E.: Multiple Criteria Optimization – Theory, Computation and Application. John Wiley & Sons, New York (1986)

    MATH  Google Scholar 

  22. Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary Algorithms for Multi-objective Optimization: Performance Assessments and Comparisons. Artificial Intelligence Review 17, 253–290 (2002)

    CrossRef  Google Scholar 

  23. Tung, C.T.: A Multicriteria Pareto-optimal Algorithm for the Traveling Salesman Problem. Asia-Pacific Journal of Operational Research 11, 103–115 (1994)

    MATH  MathSciNet  Google Scholar 

  24. Yan, Z., Zhang, L., Kang, L., Lin, G.: A New MOEA for Multi-objective TSP and Its Convergence Property Analysis. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 342–354. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W. (2005). Finding Pareto-Optimal Set by Merging Attractors for a Bi-objective Traveling Salesmen Problem . In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics