Abstract
This paper presents a new search procedure to tackle multi-objective traveling salesman problem (TSP). This procedure constructs the solution at-tractor for each of the objectives respectively. Each attractor contains the best solutions found for the corresponding objective. Then, these attractors are merged to find the Pareto-optimal solutions. The goal of this procedure is not only to generate a set of Pareto-optimal solutions, but also to provide the infor-mation about these solutions that will allow a decision-maker to choose a good compromise solution.
Keywords
- Local Search
- Multiobjective Optimization
- Travel Salesman Problem
- Travel Salesman Problem
- Local Search Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Angel, E., Bampis, E., Gourvès, L.: A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 153–176. Springer, Heidelberg (2004)
Borges, P.C., Hansen, M.P.: A Study of Global Convexity for a Multiple Objective Traveling Salesman Problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 129–150. Kluwer Academic Publishers, Norwell (2002)
Boese, K.D., Kahng, A.B., Muddu, S.: A New Adaptive Multistart Technique for Combinatorial Global Optimizations. Operations Research Letters 16(2), 101–113 (1994)
Collette, Y., Siarry, P.: Multiobjective Optimization – Principles and Case Studies. Springer, Berlin (2003)
Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2000)
Ehrgott, M.: Approximation Algorithms for Combinatorial Multi-Criteria Problems. International Transactions in Operations Research 7, 5–31 (2000)
Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization. OR Spectrum 22(4), 425–460 (2000)
Fisher, R., Richter, K.: Solving a Multiobjective Traveling Salesman Problem by Dynamic Programming. Mathematische Operationsforschung und Statistik, Series Optimization 13(2), 247–252 (1982)
Gupta, A., Warburton, A.: Approximation Methods for Multiple Criteria Traveling Salesman Problems. In: Sawaragi, Y. (ed.) Towards Interactive and Intelligent Decision Support Systems: Proceedings of the 7th International Conference on Multiple Criteria Decision Making, pp. 211–217. Springer, Berlin (1986)
Hansen, M.P.: Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristics: The Case of MOTSP. Journal of Heuristics 6, 419–431 (2000)
Jaszkiewicz, A.: Genetic Local Search for Multiple Objective Combinatorial Optimization. European Journal of Operational Research 137(1), 50–71 (2002)
Li, W.: Attractor of Local Search in the Traveling Salesman Problem. Journal of Heuristics (Forthcoming)
Lin, S.: Computer Solutions to the Traveling Salesman Problem. Bell Systems Technical Journal 44, 2245–2269 (1965)
Melamed, I.I., Sigal, I.K.: The Linear Convolution of Criteria in the Bicriteria Traveling Salesman Problem. Computational Mathematics and Mathematical Physics 37(8), 902–905 (1997)
Mezard, M., Parisi, G.: A Replica Analysis of the Traveling Salesman Problem. Journal of Physique 47, 1285–1296 (1986)
Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (1999)
Paquete, L., Chiarandini, M., Stützle, T.: Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer, Berlin (2004)
Paquete, L., Stützle, T.: A Two Phase Local Search for the Biobjective Traveling Salesman Problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003)
Raidl, G.R., Kogydek, G., Julstrom, B.A.: On Weight-Biased Mutation for Graph Problems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 204–213. Springer, Heidelberg (2002)
Sigal, I.K.: Algorithm for Solving the Two-Criterion Large-scale Traveling Salesman Problem. Computational Mathematics and Mathematical Physics 34(1), 33–43 (1994)
Steuer, R.E.: Multiple Criteria Optimization – Theory, Computation and Application. John Wiley & Sons, New York (1986)
Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary Algorithms for Multi-objective Optimization: Performance Assessments and Comparisons. Artificial Intelligence Review 17, 253–290 (2002)
Tung, C.T.: A Multicriteria Pareto-optimal Algorithm for the Traveling Salesman Problem. Asia-Pacific Journal of Operational Research 11, 103–115 (1994)
Yan, Z., Zhang, L., Kang, L., Lin, G.: A New MOEA for Multi-objective TSP and Its Convergence Property Analysis. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 342–354. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, W. (2005). Finding Pareto-Optimal Set by Merging Attractors for a Bi-objective Traveling Salesmen Problem . In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-31880-4_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24983-2
Online ISBN: 978-3-540-31880-4
eBook Packages: Computer ScienceComputer Science (R0)
