Skip to main content

A Multi-objective Memetic Algorithm for Intelligent Feature Extraction

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

This paper presents a methodology to generate representations for isolated handwritten symbols, modeled as a multi-objective optimization problem. We detail the methodology, coding domain knowledge into a genetic based representation. With the help of a model on the domain of handwritten digits, we verify the problematic issues and propose a hybrid optimization algorithm, adapted to needs of this problem. A set of tests validates the optimization algorithm and parameter settings in the model’s context. The results are encouraging, as the optimized solutions outperform the human expert approach on a known problem.

Keywords

  • Objective Space
  • Handwritten Digit
  • Feature Subset Selection
  • Projection Distance
  • Handwritten Digit Recognition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heutte, L., Paquet, T., Moreau, J.V., Lecourtier, Y., Olivier, C.: A structural/statistical feature based vector for handwritten character recognition. Pattern Recognition Letters 19(7), 629–641 (1998)

    CrossRef  Google Scholar 

  2. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: Proceedings of the International Conference on Machine Learning, pp. 121–129 (1994)

    Google Scholar 

  3. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33(1), 25–41 (2000)

    CrossRef  Google Scholar 

  4. Oliveira, L.S., Benahmed, N., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Feature Subset Selection Using Genetic Algorithms for Handwritten Digit Recognition. In: Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image Processing, pp. 362–369 (2001)

    Google Scholar 

  5. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Feature Subset Selection Using Multi-Objective Genetic Algorithms for Handwritten Digit Recognition. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 568–571 (2002)

    Google Scholar 

  6. Emmanouilidis, C., Hunter, A., MacIntyre, J.: A Multiobjective Evolutionary Setting for Feature Selection and a Commonality-Based Crossover Operator. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 309–316 (2000)

    Google Scholar 

  7. Radtke, P.V.W., Oliveira, L.S., Sabourin, R., Wong, T.: Intelligent Zoning Design Using Multi-Objective Evolutionary Algorithms. In: Proceedings of the 7th International Conference on Document Analysis and Recognition, pp. 824–828 (2003)

    Google Scholar 

  8. Sabourin, R., Genest, G., Prêteux, F.J.: Off-Line Signature Verification by Local Granulometric Size Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(9), 976–988 (1997)

    CrossRef  Google Scholar 

  9. Ruta, D., Gabrys, B.: Classifier Selection for Majority Voting. Accepted to Information fusion (2004)

    Google Scholar 

  10. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Automatic Recognition of Handwritten Numerical Strings: A Recognition and Verification Strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(11), 1438–1454 (2002)

    CrossRef  Google Scholar 

  11. Li, Z.-C., Suen, C.Y.: The partition-combination method for recognition of handwritten characters. Pattern Recognition Letters 21(9), 701–720 (2000)

    CrossRef  MATH  Google Scholar 

  12. Kimura, F., Inoue, S., Wakabayashi, T., Tsuruoka, S., Miyake, Y.: Handwritten Numeral Recognition using Autoassociative Neural Networks. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 152–155 (1998)

    Google Scholar 

  13. Knowles, J.D., Corne, D.W.: Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects. In: Krasnogor, N., Smith, J.E., Hart, W.E. (eds.) Recent Advances in Memetic Algorithms, pp. 313–352. Springer, Heidelberg (2004)

    Google Scholar 

  14. Jaszkiewicz, A.: Do Multiple-Objective Metaheuristics Deliver on Their Promise? A Computational Experiment on the Set-Covering Problem. IEE Transactions on Evolutionary Computation 7(2), 133–143 (2003)

    CrossRef  MathSciNet  Google Scholar 

  15. Pepper, J., Golden, B.L., Wasil, E.A.: Solving the Traveling Salesman Problem With Annealing-Based Heuristics: A Computational Study. IEEE Transactions on Systems, Mand and Cybernetics – Part A: Systems and Humans 32(1), 72–77 (2002)

    CrossRef  Google Scholar 

  16. Gunst, R.F., Mason, R.L.: How to Construct Fractional Factorial Experiments – ASQC basic references on quality control: v. 14. American Society for Quality Control – Statistics Division, 611 East Wisconsin Avenue, Milwaukee, Wisconsin 53202, USA (2001)

    Google Scholar 

  17. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case Study. In: Parallel Problem Solving from Nature – PPSVN V. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radtke, P.V.W., Wong, T., Sabourin, R. (2005). A Multi-objective Memetic Algorithm for Intelligent Feature Extraction. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics