Skip to main content

Evolutionary Multi-objective Optimization for Simultaneous Generation of Signal-Type and Symbol-Type Representations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

It has been a controversial issue in the research of cognitive science and artificial intelligence whether signal-type representations (typically connectionist networks) or symbol-type representations (e.g., semantic networks, production systems) should be used. Meanwhile, it has also been recognized that both types of information representations might exist in the human brain. In addition, symbol-type representations are often very helpful in gaining insights into unknown systems. For these reasons, comprehensible symbolic rules need to be extracted from trained neural networks. In this paper, an evolutionary multi-objective algorithm is employed to generate multiple models that facilitate the generation of signal-type and symbol-type representations simultaneously. It is argued that one main difference between signal-type and symbol-type representations lies in the fact that the signal-type representations are models of a higher complexity (fine representation), whereas symbol-type representations are models of a lower complexity (coarse representation). Thus, by generating models with a spectrum of model complexity, we are able to obtain a population of models of both signal-type and symbol-type quality, although certain post-processing is needed to get a fully symbol-type representation. An illustrative example is given on generating neural networks for the breast cancer diagnosis benchmark problem.

Keywords

  • Neural Network
  • Mean Square Error
  • Multiobjective Optimization
  • Hide Neuron
  • Rule Extraction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass, H.A.: An evolutionary artificialneuralnet works approach for breast cancer diagnosis. Artificial Intelligence in Medicine 25(3), 265–281 (2002)

    CrossRef  Google Scholar 

  2. Abbass, H.A.: Speeding up back-propagation using multiobjective evolutionary algorithms. Neural Computation 15(11), 2705–2726 (2003)

    CrossRef  MATH  Google Scholar 

  3. Andrews, R., Diederich, J., Tickle, A.: A survey and critique of techniques for extracting rules from trained artificialneuralnet works. Knowledge Based Systems 8(6), 373–389 (1995)

    CrossRef  Google Scholar 

  4. Badre, D., Wagner, A.: Semantic retrieval, mnemonic control, and prefrontal cortex. Behavior and Cognitive Neuroscience Reviews 1(3), 206–218 (2002)

    CrossRef  Google Scholar 

  5. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  6. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  7. Coello Coello, C., Veldhuizen, D., Lamont, G.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic, New York (2002)

    MATH  Google Scholar 

  8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Parallel Problem Solving from Nature, vol. VI, pp. 849–858 (2000)

    Google Scholar 

  10. Duch, W., Adamczak, R., Grabczewski, K.: Extraction of logical rules from backpropagation networks. Neural Processing Letters 7, 1–9 (1998)

    CrossRef  Google Scholar 

  11. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for rule-based data understanding. Proceedings of the IEEE 92(5), 771–805 (2004)

    CrossRef  Google Scholar 

  12. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture: A criticalanalysis. Cognition 28(3), 3–71 (1988)

    CrossRef  Google Scholar 

  13. Gabrieli, J., Poldrack, R., Desmond, J.: The role of left prefrontal cortex in langrange and memory. Proceedings of the national Academy of Sciences 95, 906–913 (1998)

    CrossRef  Google Scholar 

  14. Hüsken, M., Gayko, J.E., Sendhoff, B.: Optimization for problem classes –Neural networks that learn to learn. In: Yao, X., Fogel, D.B. (eds.) IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (ECNN 2000), pp. 98–109. IEEE Press, Los Alamitos (2000)

    CrossRef  Google Scholar 

  15. Igeland, C., Hüsken, M.: Improving the Rprop learning algorithm. In: Proceedings of the 2nd ICSC International Symposium on Neural Computation, pp. 115–121 (2000)

    Google Scholar 

  16. Ishibuchi, H., Yamamoto, T.: Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1077–1088 (2003)

    Google Scholar 

  17. Ishikawa, M.: Rule extraction by successive regularization. Neural Networks 13, 1171–1183 (2000)

    CrossRef  Google Scholar 

  18. Jin, Y.: Advanced Fuzzy Systems Design and Applications. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  19. Jin, Y., Okabe, T., Sendhoff, B.: Neuralnet work regularization and ensembling using multi-objective evolutionary algorithms. In: Congress on Evolutionary Computation, pp. 1–8. IEEE, Los Alamitos (2004)

    Google Scholar 

  20. Jin, Y., Sendhoff, B.: Extracting interpretable fuzzy rules from RBF networks. Neural Processing Letters 17(2), 149–164 (2003)

    CrossRef  MATH  Google Scholar 

  21. Martin, A., Chao, L.: Semantic memory and the brain: Structure and process. Current Opinions in Neurobiology 11, 194–201 (2001)

    CrossRef  Google Scholar 

  22. Miller, D.A., Zurada, J.M.: A dynamical system perspective of structural learning with forgetting. IEEE Transactions on Neural Networks 9(3), 508–515 (1998)

    CrossRef  Google Scholar 

  23. Prechelt, L.: PROBEN1 - a set of neuralnet work benchmark problems and benchmarking rules. Technical Report 21/94, Fakultát für Informatik, Universität Karlsruhe (1994)

    Google Scholar 

  24. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  25. Reed, R.D., Marks II, R.J.: Neural Smithing. MIT Press, Cambridge (1999)

    Google Scholar 

  26. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropgation learning: The RPROP algorithm. In: IEEE international Conference on Neural Networks, vol. 1, pp. 586–591. IEEE, New York (1993)

    CrossRef  Google Scholar 

  27. Setiono, R.: Generating concise and accurate classification rules for breast cancer disgnosis. Artificial Intelligence in Medicine 18, 205–219 (2000)

    CrossRef  Google Scholar 

  28. Setiono, R., Liu, H.: Symbolic representation of neural networks. IEEE Computer 29(3), 71–77 (1996)

    Google Scholar 

  29. Taha, I., Ghosh, J.: Symbolic interpretation of artificialneuralnet works. IEEE Transactions on Knowledge and Data Engineering 11(3), 448–463 (1999)

    CrossRef  Google Scholar 

  30. de Roselito Teixeira, A., Braga, A.P., Takahashi, R.H.C., Saldanha, R.R.: Improving generalization of MLPs with multi-objective optimization. Neurocomputing 35, 189–194 (2000)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jin, Y., Sendhoff, B., Körner, E. (2005). Evolutionary Multi-objective Optimization for Simultaneous Generation of Signal-Type and Symbol-Type Representations. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics