Skip to main content

A Two-Level Evolutionary Approach to Multi-criterion Optimization of Water Supply Systems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

Purpose of the paper is to introduce a methodology for a parameter-free multi-criterion optimization of water distribution networks. It is based on a two-level approach, with a population of inner multi-objective genetic algorithms (MOGAs) and an outer simple GA (without crossover). The inner MOGAs represent the network optimizers, while the outer GA – the meta GA – is a supervisor process adapting mutation and crossover probabilities of the inner MOGAs. The hypervolume metric has been adopted as fitness for the individuals at the meta-level. The methodology has been applied to a small system often studied in the literature, for which an exhaustive search of the entire decision space has allowed the determination of all Pareto-optimal solutions of interest: the choice of this simple system was done in order to compare the hypervolume metric to two performance measures (a convergence and a sparsity index) introduced on purpose. Simulations carried out show how the proposed procedure proves robust, giving better results than a MOGA alone, thus allowing a considerable ease in the network optimization process.

Keywords

  • Pareto Front
  • Water Distribution System
  • Water Resource Research
  • Water Distribution Network
  • Water Resource Planning

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yates, D.F., Templeman, A.B., Boffey, T.B.: The Computational Complexity of the Problem of Determining Least Capital Cost Designs for Water Supply Networks. Engineering Optimization 7, 142–155 (1984)

    CrossRef  Google Scholar 

  2. Alperovits, E., Shamir, U.: Design of Optimal Water Distribution Systems. Water Resources Research 13, 885–900 (1977)

    CrossRef  Google Scholar 

  3. Quindry, G., Brill, E.D., Liebman, J.C.: Optimization of Looped Water Distribution Systems. Journal of Environmental Engineering 107, 665–679 (1981)

    Google Scholar 

  4. Goulter, I.C., Lussier, B.M., Morgan, D.R.: Implications of Head Loss Path Choice in the Optimization of Water Distribution Networks. Water Resources Research 22, 819–822 (1986)

    CrossRef  Google Scholar 

  5. Fujiwara, O., JenChaimahakoon, B., Edirisinghe, N.: A Modified Linear Programming Gradient Method for Optimal Design of Looped Water Distribution Networks. Water Resources Research 23, 977–982 (1987)

    CrossRef  Google Scholar 

  6. Kessler, A., Shamir, U.: Analysis of the Linear Programming Gradient Method for Optimal Design of Water Supply Networks. Water Resources Research 25, 1469–1480 (1989)

    CrossRef  Google Scholar 

  7. Bhave, P.R., Sonak, V.V.: A Critical Study of the Linear Programming Gradient Method for Optimal Design of Water Supply Networks. Water Resources Research 28, 1577–1584 (1992)

    CrossRef  Google Scholar 

  8. El-Bahrawy, A., Smith, A.A.: Application of MINOS to Water Collection and Distribution Networks. Civil Engineering Systems 2, 38–49 (1985)

    CrossRef  Google Scholar 

  9. Duan, N., Mays, L.W., Lansey, K.E.: Optimal Reliability-Based Design of Pumping and Distribution Systems. Journal of Hydraulic Engineering 116, 249–268 (1990)

    CrossRef  Google Scholar 

  10. Simpson, A.R., Dandy, G.C., Murphy, L.J.: Genetic Algorithms Compared to other Techniques for Pipe Optimization. Journal of Water Resources Planning and Management 120, 423–443 (1994)

    CrossRef  Google Scholar 

  11. Dandy, G.C., Simpson, A.R., Murphy, L.J.: An Improved Genetic Algorithm for Pipe Network optimization. Water Resources Research 32, 449–458 (1996)

    CrossRef  Google Scholar 

  12. Savic, D.A., Walters, G.A.: Genetic Algorithms for Least-Cost Design of Water Distribution Networks. Journal of Water Resources Planning and Management 123, 67–77 (1997)

    CrossRef  Google Scholar 

  13. Montesinos, P., Garcia-Guzman, A., Ayuso, J.L.: Water Distribution Network Optimization Using a Modified Genetic Algorithm. Water Resources Research 35, 3467–3473 (1999)

    CrossRef  Google Scholar 

  14. Reis, L.F.R., Porto, R.M., Chaudry, F.H.: Optimal Location of Control Valves in Pipe Networks by Genetic Algorithm. Journal of Water Resources Planning and Management 123, 317–326 (1997)

    CrossRef  Google Scholar 

  15. Vitkovsky, J.P., Simpson, A.R., Lambert, M.F.: Leak Detection and Calibration Using Transients and Genetic Algorithms. Computer Aided Civil and Infrastructure Engineering 15, 374–382 (2000)

    CrossRef  Google Scholar 

  16. Meyer, R.W., Barkdoll, B.D.: Sampling Design for Network Model Calibration Using Genetic Algorithms. Journal of Water Resources Planning and Management 126, 245–250 (2000)

    CrossRef  Google Scholar 

  17. Dandy, G.C., Engelhardt, M.: Optimal Scheduling of Water Pipe Replacement Using Genetic Algorithms. Journal of Water Resources Planning and Management 127, 214–223 (2001)

    CrossRef  Google Scholar 

  18. Walters, G.A., Lohbeck, T.: Optimal Layout of Tree Networks Using Genetic Algorithms. Engineering Optimization 22, 27–48 (1993)

    CrossRef  Google Scholar 

  19. Abebe, A.J., Solomatine, D.P.: Application of Global Optimization to the Design of Pipe Networks. In: Babovic, Larsen (eds.) Hydroinformatics 1998, pp. 989–996. World Scientific, Singapore (1998)

    Google Scholar 

  20. Walski, T.M.: The Wrong Paradigm – Why Water Distribution Optimization Doesn’t Work. Journal of Water Resources Planning and Management 127, 203–205 (2001)

    CrossRef  Google Scholar 

  21. Halhal, D., Walters, G.A., Ouazar, D., Savic, D.A.: Water Network Rehabilitation with Structured Messy Genetic Algorithm. Journal of Water Resources Planning and Management 123, 137–146 (1997)

    CrossRef  Google Scholar 

  22. Cheung, P.B., Reis, L.F.R., Formiga, K.T.M., Chaudry, F.H., Ticona, W.G.C.: Multiobjective Evolutionary Algorithms Applied to the Rehabilitation of a Water Distribution System: a Comparative Study. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 662–676. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  23. Formiga, K.T.M., Chaudry, F.H., Cheung, P.B., Reis, L.F.R.: Optimal Design of Water Distribution System by Multiobjective Evolutionary Methods. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 677–691. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  24. Tolson, B.A., Maier, H.R., Simpson, A.R., Lence, B.J.: Genetic Algorithms for Reliability-Based Optimization of Water Distribution Systems. Journal of Water Resources Planning and Management 130, 63–72 (2004)

    CrossRef  Google Scholar 

  25. Prasad, T.D., Park, N.-S.: Multiobjective Genetic Algorithms for Design of Water Distribution Networks. Journal of Water Resources Planning and Management 130, 73–82 (2004)

    CrossRef  Google Scholar 

  26. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  27. Knowles, J.D., Corne, D.W.: On Metrics for Comparing Nondominated Sets. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), pp. 711–716 (2002)

    Google Scholar 

  28. Fleischer, M.: The Measure of Pareto Optima. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  29. Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. IEEE Transactions Systems Man Cybernetics 16, 122–128 (1986)

    CrossRef  Google Scholar 

  30. Bramlette, M.F.: Initialization, Mutation and Selection Methods in Genetic Algorithms for Function Optimization. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 100–107. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  31. Spears, W.M.: Adapting Crossover in Evolutionary Algorithms. In: McDonnel, J.R., et al. (eds.) Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 367–384. MIT Press, Cambridge (1995)

    Google Scholar 

  32. Back, T.: Self-Adaptation in Genetic Algorithms. In: Varela, F.J., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life, pp. 263–271. MIT Press, Cambridge (1992)

    Google Scholar 

  33. Srinivas, M., Patnaik, L.M.: Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Transactions System Man Cybernetics 24, 656–666 (1994)

    CrossRef  Google Scholar 

  34. Nicolini, M.: Evaluating Performance of Multi-Objective Genetic Algorithms for Water Distribution System Optimization. In: Liong, et al. (eds.) Hydroinformatics 2004, pp. 850–857. World Scientific, Singapore (2004)

    CrossRef  Google Scholar 

  35. Rossman, L.A.: EPANET 2 USERS MANUAL. U.S. Environmental Protection Agency, Cincinnati, Ohio (2000)

    Google Scholar 

  36. Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components (v. 2.4.5). Mechanical Engineering Department, Massachussets Institute of Technology (2000)

    Google Scholar 

  37. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Proceedings of the Parallel Problem Solving from Nature VI, pp. 849–858 (2000)

    Google Scholar 

  38. Deb, K., Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better convergence. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 67–81. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicolini, M. (2005). A Two-Level Evolutionary Approach to Multi-criterion Optimization of Water Supply Systems. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics