Skip to main content

Multiobjective Shape Optimization Using Estimation Distribution Algorithms and Correlated Information

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

We propose a new approach for multiobjective shape optimization based on the estimation of probability distributions. The algorithm improves search space exploration by capturing landscape information into the probability distribution of the population. Correlation among design variables is also used for the computation of probability distributions. The algorithm uses finite element method to evaluate objective functions and constraints. We provide several design problems and we show Pareto front examples. The design goals are: minimum weight and minimum nodal displacement, without holes or unconnected elements in the structure.

Keywords

  • Pareto Front
  • Probability Vector
  • True Pareto Front
  • Univariate Marginal Distribution Algorithm
  • Population Base Incremental Learn

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman, C.D., Saitou, K., Jakiela, M.J.: Genetic algorithms as an approach to configuration and topology design. Jou. Mech. Des. 116, 1005–1011 (1994)

    CrossRef  Google Scholar 

  2. Deb, K., Goell, T.: Multiobjetive Evolutionary Algorithms for Engineering Shape Optimization. KanGal report 200003, Kanpur, India (2000)

    Google Scholar 

  3. Kane, C., Schoenauer, M.: Topological Optimum Design using Genetic Algorithms. In: Control and Cybernetics, 25th edn. (1996)

    Google Scholar 

  4. Li, H., Zhang, Q., Tsang, E.P., Ford, J.A.: Hybrid Estimation of Distribution Algorithm for Multiobjective Knapsack Problem. In: Proceedings of the 4th European Conference on Evolutionary Computation in Combinatorial Optimization, Coimbra, Portugal (2004)

    Google Scholar 

  5. Marroquín, J.L., Velasco, F.A., Rivera, M., Nakamura, M.: Gauss-Markov Measure Field Models for Low-Level Vision. IEEE Trans. On PAMI 23(4), 337–348 (2001)

    Google Scholar 

  6. Mühlenbein, H., PaaB, G.: From reconbination of Genes to the estimation of distributions I. Binary parameters. In: Parallel problem Solving form Nature (PPSN IV), pp. 178–187 (1996)

    Google Scholar 

  7. Baluja, S.: Population Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning School of Computer Science Carnegie Mellon University, Pittsburgh, Pennsylvania 1523. CMU-CS-94-163 (1996)

    Google Scholar 

  8. Pelikan, M., Goldberg, D.E., Paz, C.: Linkage problem, distribution estimation and bayesian networks. IlliGal Report No. 98013 Urbana Il University (1998)

    Google Scholar 

  9. Pelikan, M., Goldberg, D.E., Paz, C.: BOA: The Bayesian Optimization Algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 1999 (1999)

    Google Scholar 

  10. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Pretence Hall Inc., Englewood Cliffs (1969)

    Google Scholar 

  11. Zienkiewicz, O.C., Taylor, R.L.: El Método de los Elementos Finitos, Cuarta Edición, vol. 2. Mc. Graw Hill-CIMNE (1995)

    Google Scholar 

  12. Deb, K., Jain, S.: Running Perfomance Metrics for Evolutionary Multi-Objective Optimization. KanGal report 2002004, Kanpur, India (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peña, S.I.V., Rionda, S.B., Aguirre, A.H. (2005). Multiobjective Shape Optimization Using Estimation Distribution Algorithms and Correlated Information. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics