Skip to main content

High-Fidelity Multidisciplinary Design Optimization of Wing Shape for Regional Jet Aircraft

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

A large-scale, real-world application of Evolutionary Multi- Criterion Optimization (EMO) is reported in this paper. The Multidisciplinary Design Optimization among aerodynamics, structures and aeroelasticity for the wing of a transonic regional jet aircraft has been performed using high-.delity models. An Euler/Navier-Stokes (N-S) Computational Fluid Dynamics (CFD) solver is employed for the aerodynamic evaluation. The NASTRAN, a commercial software, is coupled with a CFD solver for the structural and aeroelastic evaluations. Adaptive Range Multi-Objective Genetic Algorithm is employed as an optimizer. The objective functions are minimizations of block fuel and maximum takeo. weight in addition to di.erence in the drag between transonic and subsonic .ight conditions. As a result, nine non-dominated solutions have been generated. They are used for tradeo. analysis among three objectives. One solution is found to have one percent improvement in the block fuel compared to the original geometry designed in the conventional manner. All the solutions evaluated during the evolution are analyzed by Self-Organizing Map to extract key features of the design space.

Keywords

  • Computational Fluid Dynamics
  • Design Variable
  • Design Space
  • Aerodynamic Performance
  • Multidisciplinary Design Optimization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroo, I., Altus, S., Braun, R., Gage, P., Sobieski, I.: Multidisciplinary Optimization Methods for Aircraft Preliminary Design, AIAA Paper 94-4325-CP (1994)

    Google Scholar 

  2. Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary Aerospace Design Optimization. Survey of Recent Developments, Structural Optimization 14(1), 1–23 (1997)

    Google Scholar 

  3. Martins, J.R.R.A., Alonso, J.J., Reuther, J.J.: High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet. Journal of Aircraft  41(3), 523–530 (2004)

    CrossRef  Google Scholar 

  4. Oyama, A., Obayashi, S., Nakahashi, K., Hirose, N.: Aerodynamic Wing Optimization via Evolutionary Algorithms Based on Structured Coding. Computational Fluid Dynamics Journal  8(4), 570–577 (2000)

    Google Scholar 

  5. Murayama, M., Nakahashi, K., Matsushima, K.: Unstructured Dynamic Mesh for Large Movement and Deformation, AIAA Paper 2002-0122 (2002)

    Google Scholar 

  6. Yamazaki, W., Matsushima, K., Nakahashi, K.: Aerodynamic Optimization of NEXST-1 SST Model at Near-Sonic Regime, AIAA Paper 2004-0034 (2004)

    Google Scholar 

  7. Sasaki, D., Obayashi, S., Nakahashi, K.: Navier-Stokes Optimization of Supersunic Wings with Four Objectives Using Evolutionary Algorithm. Journal of Aircraft  39(4), 621–629 (2002)

    CrossRef  Google Scholar 

  8. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423 (1993)

    Google Scholar 

  9. Obayashi, S., Takahashi, S., Takeguchi, Y.: Niching and Elitist Models for MOGAs, Parallel Problem Solving from Nature. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 260–269. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  10. Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm. In: Proceedings of the Second International Conference on Genetic Algorithms, pp. 14–21 (1987)

    Google Scholar 

  11. Eshelman, L.J., Schaffer, J.D.: Real-Coded Genetic Algorithms and Interval Schemata. In: Foundations of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  12. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Ltd., Chichester (2001)

    MATH  Google Scholar 

  13. MSC. website, http://www.mscsoftware.com/ [cited 14 September 2004]

  14. Ito, Y., Nakahashi, K.: Direct Surface Triangulation Using Stereolithography Data. AIAA Journal 40(3), 490–496 (2002)

    CrossRef  Google Scholar 

  15. Sharov, D., Nakahashi, K.: A Boundary Recovery Algorithm for Delaunay Tetrahedral Meshing,. In: Proceedings of the 5th International Conference on Numerical Grid Generation in Computational Field Simulations, pp. 229–238 (1996)

    Google Scholar 

  16. Ito, Y., Nakahashi, K.: Improvements in the Reliability and Quality of Unstructured Hybrid Mesh Generation. International Journal for Numerical Methods in Fluids 45(1), 79–108 (2004)

    CrossRef  MATH  Google Scholar 

  17. Obayashi, S., Guruswamy, G.P.: Convergence Acceleration of an Aeroelastic Navier-Stokes Solver. AIAA Journal 33(6), 1134–1141 (1994)

    CrossRef  Google Scholar 

  18. Venkatakrishnan, V.: On the Accuracy of Limiters and Convergence to Steady State Solutions, AIAA Paper 93-0880 (1993)

    Google Scholar 

  19. Sharov, D., Nakahashi, K.: Reordering of Hybrid Unstructured Grids for Lower-Upper Symmetric Gauss-Seidel Computations. AIAA Journal 36(3), 484–486 (1998)

    CrossRef  Google Scholar 

  20. Dacles-Mariani, J., Zilliac, G.G., Chow, J.S., Bradshaw, P.: Numerical/Experimental Study of a Wingtip Vortex in the Near Field. AIAA Journal 33(9), 1561–1568 (1995)

    CrossRef  Google Scholar 

  21. Chiba, K., Obayashi, S., Nakahashi, K.: CFD Visualization of Second Primary Vortex Structure on a 65-Degree Delta Wing, AIAA Paper 2004-1231 (2004)

    Google Scholar 

  22. Yamazaki, W.: Aerodynamic Optimization of Near-Sonic Plane Based on NEXST-1 SST Model, ICAS 2004-4.3.4 (2004)

    Google Scholar 

  23. Obayashi, S., Sasaki, D.: Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 796–809. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  24. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  25. Eudaptics website, http://www.eudaptics.com [cited 16 June 2004]

  26. Deboeck, G., Kohonen, T.: Visual Explorations in Finance with Self-Organizing Maps, London. Springer, Finance (1998)

    MATH  Google Scholar 

  27. Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiba, K., Obayashi, S., Nakahashi, K., Morino, H. (2005). High-Fidelity Multidisciplinary Design Optimization of Wing Shape for Regional Jet Aircraft. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics