Skip to main content

Gray Coding in Evolutionary Multicriteria Optimization: Application in Frame Structural Optimum Design

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

A comparative study of the use of Gray coding in multicriteria evolutionary optimisation is performed using the SPEA2 and NSGAII algorithms and applied to a frame structural optimisation problem. A double minimization is handled: constrained mass and number of different cross-section types. Influence of various mutation rates is considered. The comparative statistical results of the test case cover a convergence study during evolution by means of certain metrics that measure front amplitude and distance to the optimal front. Results in a 55 bar-sized frame test case show that the use of the Standard Binary Reflected Gray code compared versus Binary code allows to obtain fast and more accurate solutions, more coverage of non-dominated fronts; both with improved robustness in frame structural multiobjective optimum design.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burns, S.A. (ed.): Recent Advances in Optimal Structural Design. Institute of American Society of ASCE-SEI (2002)

    Google Scholar 

  2. Caruana, R., Schaffer, J.: Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms. In: Proceedings of the Fifth International Conference on Machine Learning, pp. 153–161. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  3. Chakraborty, U.K., Janikow, C.Z.: An analysis of Gray versus binary encoding in genetic search. Information Sciences: an International Journal; Special Issue: Evolutionary Computation 156, 253–269 (2003)

    MathSciNet  Google Scholar 

  4. Coello Coello, C.A., Christiansen, A.D.: Multiobjective optimization of trusses using genetic algorithms. Computers & Structures 75, 647–660 (2000)

    CrossRef  Google Scholar 

  5. Coello Coello, C.A.: An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design, PhD Thesis, Tulane University, LA, U.S.A. (1996)

    Google Scholar 

  6. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for solving multi-objective problems. GENA Series. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  7. Cuthill, M.: Reducing the bandwidth of sparse symmetric matrixe. In: Proceedings ACM National Conference, New York (1969)

    Google Scholar 

  8. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. Series in Systems and Optimization. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  9. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm NSGAII. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  10. French, S.: Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop. Wiley, New York (1982)

    MATH  Google Scholar 

  11. Galante, M.: Genetic Algorithms as an approach to optimise real-world trusses. International Journal for Numerical Methods in Engineering 39, 361–382 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Goldberg, D.E.: Genetic algorithms for search, optimisation, and machine learning. Addison Wesley, Reading (1989)

    Google Scholar 

  13. Goldberg, D.E., Samtani, M.P.: Engineering Optimization via genetic algorithm. In: Proceedings Ninth Conference on Electronic Computation, pp. 471–482. ASCE, New York (1986)

    Google Scholar 

  14. Greiner, D., Emperador, J.M., Winter, G.: Single and Multiobjective Frame Optimization by Evolutionary Algorithms and the Auto-adaptive Rebirth Operator. Computer Methods in Applied Mechanics and Engineering 193, 3711–3743 (2004)

    CrossRef  MATH  Google Scholar 

  15. Greiner, D., Emperador, J.M., Winter, G.: Multiobjective Optimisation of Bar Structures by Pareto-GA. In: European Congress on Computational Methods in Applied Sciences and Engineering, CIMNE (2000)

    Google Scholar 

  16. Greiner, D., Winter, G., Emperador, J.M.: Optimising Frame Structures by different strategies of GA. Finite Elements in Analysis and Design 37(5), 381–402 (2001)

    CrossRef  MATH  Google Scholar 

  17. Greiner, D., Winter, G., Emperador, J.M., Galván, B.: An efficient adaptation of the truncation operator in SPEA2. In: Herrera, et al. (eds.) Proceedings of the First Spanish Congress on Evolutionary and Bioinspired Algorithms, Mérida, Spain (February 2002) (in Spanish)

    Google Scholar 

  18. Grierson, D.E., Pak, W.H.: Optimal sizing, geometrical and topological design using a genetic algorithm. Structural Optimization 6(3), 151–159 (1993)

    CrossRef  Google Scholar 

  19. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)

    CrossRef  Google Scholar 

  20. Hernández Ibáñez, S.: Structural Optimum Design Methods. Colección Seinor. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid (1990)

    Google Scholar 

  21. Hernández Ibáñez, S.: From Conventional Design to Optimum Design. Posibilities and Variants. Part I. Sensibility Analysis and local and global Optimisation. International Journal of Numerical Methods for Calculus and Engineering Design CIMNE, 91–110 (1993) (in Spanish)

    Google Scholar 

  22. Hinterding, R., Gielewski, H., Peachey, T.C.: The nature of mutation in genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms 1989, pp. 70–79. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  23. Koski, J.: Multicriteria optimization in structural design: state of the art. In: Proceedings of the 19th Design Automation Conferences ASME, pp. 621–629 (1993)

    Google Scholar 

  24. Liu, M., Burns, S.A., Wen, Y.K.: Optimal seismic design of steel frame buildings based on life cycle cost considerations. Earthquake Eng. Struc. 32(9), 1313–1332 (2003)

    CrossRef  Google Scholar 

  25. Mathias, K.E., Whitley, D.: Trasforming the Search Space with Gray Coding. In: IEEE Int. Conference on Evolutionary Computation, pp. 513–518. IEEE Service Center, Los Alamitos (1994)

    Google Scholar 

  26. Radcliffe, N.J., Surry, P.D.: Fundamental Limitations on Search Algorithms: Evolutionary Computing in Perspective. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 275–291. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  27. Rowe, J., Whitley, D., Barbulescu, L., Watson, P.: Properties of Gray and Binary Representations. Evolutionary Computation 12(1), 46–76 (2004)

    CrossRef  Google Scholar 

  28. Sarma, K., Adeli, H.: Life-cycle cost optimization of steel structures. International Journal for Numerical Methods in Engineering 55, 1451–1462 (2002)

    CrossRef  MATH  Google Scholar 

  29. Savage, C.: A Survey of Combinatorial Gray Codes. SIAM Review 39(4), 605–629 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Whitley, D.: A free lunch proof for Gray versus Binary Codings. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 726–733. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  31. Whitley, D., Rana, S., Heckendorn, R.: Representation Issues in Neighborhood Search and Evolutionary Algorithms. In: Quagliarella, D., Périaux, J., Poloni, C., Winter, G. (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 39–57. John Wiley & Sons, Chichester (1997)

    Google Scholar 

  32. Wolpert, D.H., MacReady, W.G.: No Free Lunch Theorems for Search, Technical Report SFI-TR-95-02-010, Santa Fe Institute (July 1995)

    Google Scholar 

  33. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization : Methods and Applications. PhD Thesis. Swiss Federal Institute of Technology (ETH), Zurich (1999)

    Google Scholar 

  34. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, CIMNE, pp. 95–100 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greiner, D., Winter, G., Emperador, J.M., Galván, B. (2005). Gray Coding in Evolutionary Multicriteria Optimization: Application in Frame Structural Optimum Design. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics