Skip to main content

Multi-objective Model Selection for Support Vector Machines

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3410))

Included in the following conference series:

Abstract

In this article, model selection for support vector machines is viewed as a multi-objective optimization problem, where model complexity and training accuracy define two conflicting objectives. Different optimization criteria are evaluated: Split modified radius margin bounds, which allow for comparing existing model selection criteria, and the training error in conjunction with the number of support vectors for designing sparse solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine 25, 265–281 (2002)

    Article  Google Scholar 

  2. Abbass, H.A.: Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Computation 15, 2705–2726 (2003)

    Article  MATH  Google Scholar 

  3. Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling using multi-objective evolutionary algorithms. In: Congress on Evolutionary Computation (CEC2004), pp. 1–8. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  4. Wiegand, S., Igel, C., Handmann, U.: Evolutionary multi-objective optimization of neural networks for face detection. International Journal of Computational Intelligence and Applications 4, 237–253 (2004)

    Article  Google Scholar 

  5. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  7. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Mathematics in Science and Engineering, vol. 176. Academic Press, London (1985)

    MATH  Google Scholar 

  8. Chung, K.M., Kao, W.C., Sun, C.L., Lin, C.J.: Radius margin bounds for support vector machines with RBF kernel. Neural Computation 15, 2643–2681 (2003)

    Article  MATH  Google Scholar 

  9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  10. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)

    Google Scholar 

  11. Beyer, H.G., Schwefel, H.P.: Evolution strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bäck, T.: An overview of parameter control methods by self-adaptation in evolutionary algorithms. Fundamenta Informaticae 35, 51–66 (1998)

    MATH  Google Scholar 

  13. Igel, C., Toussaint, M.: Neutrality and self-adaptation. Natural Computing 2, 117–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Laumanns, M., Rudolph, G., Schwefel, H.P.: Mutation control and convergence in evolutionary multi-objective optimization. In: Matousek, R., Osmera, P. (eds.) Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001), pp. 24–29. University of Technology, Brno (2001)

    Google Scholar 

  15. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  17. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  18. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46, 131–159 (2002)

    Article  MATH  Google Scholar 

  19. Gold, C., Sollich, P.: Model selection for support vector machine classification. Neurocomputing 55, 221–249 (2003)

    Article  Google Scholar 

  20. Keerthi, S.S.: Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transactions on Neural Networks 13, 1225–1229 (2002)

    Article  Google Scholar 

  21. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. In: Verleysen, M. (ed.) 12th European Symposium on Artificial Neural Networks (ESANN 2004), pp. 519–524. d-side publications, Evere (2004)

    Google Scholar 

  22. Runarsson, T.P., Sigurdsson, S.: Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing – Letters and Reviews 3, 59–68 (2004)

    Google Scholar 

  23. Fröhlich, H., Chapelle, O., Schölkopf, B.: Feature selection for support vector machines by means of genetic algorithms. In: 15th IEEE International Conference on Tools with AI (ICTAI 2003), pp. 142–148. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

  24. Eads, D.R., Hill, D., Davis, S., Perkins, S.J., Ma, J., Porter, R.B., Theiler, J.P.: Genetic algorithms and support vector machines for time series classification. In: Bosacchi, B., Fogel, D.B., Bezdek, J.C. (eds.) Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V. Proceedings of the SPIE, vol. 4787, pp. 74–85 (2002)

    Google Scholar 

  25. Jong, K., Marchiori, E., van der Vaart, A.: Analysis of proteomic pattern data for cancer detection. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 41–51. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Miller, M.T., Jerebko, A.K., Malley, J.D., Summers, R.M.: Feature selection for computer-aided polyp detection using genetic algorithms. In: Clough, A.V., Amini, A.A. (eds.) Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications. Proceedings of the SPIE, vol. 5031, pp. 102–110 (2003)

    Google Scholar 

  27. Schölkopf, B., Burges, C.J.C., Vapnik, V.: Extracting support data for a given task. In: Fayyad, U.M., Uthurusamy, R. (eds.) Proceedings of the First International Conference on Knowledge Discovery & Data Mining, pp. 252–257. AAAI Press, Menlo Park (1995)

    Google Scholar 

  28. Duan, K., Keerthi, S.S., Poo, A.: Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51, 41–59 (2003)

    Article  Google Scholar 

  29. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  30. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for adaboost. Machine Learning 42, 287–320 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Igel, C. (2005). Multi-objective Model Selection for Support Vector Machines. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics