Abstract
Differential Evolution (DE) is a simple but powerful evolutionary optimization algorithm with many successful applications. In this paper we propose Differential Evolution for Multiobjective Optimization (DEMO) – a new approach to multiobjective optimization based on DE. DEMO combines the advantages of DE with the mechanisms of Pareto-based ranking and crowding distance sorting, used by state-of-the-art evolutionary algorithms for multiobjective optimization. DEMO is implemented in three variants that achieve competitive results on five ZDT test problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
Price, K.V., Storn, R.: Differential evolution – a simple evolution strategy for fast optimization. Dr. Dobb’s Journal 22, 18–24 (1997)
Lampinen, J.: A bibliography of differential evolution algorithm, http://www2.lut.fi/~jlampine/debiblio.htm
Abbass, H.A., Sarker, R., Newton, C.: PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001), Piscataway, New Jersey, vol. 2, pp. 971–978. IEEE Service Center, Los Alamitos (2001)
Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Congress on Evolutionary Computation (CEC’2002), vol. 1, pp. 831–836. IEEE Computer Society Press, Piscataway (2002)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)
Madavan, N.K.: Multiobjective optimization using a pareto differential evolution approach. In: Congress on Evolutionary Computation (CEC’2002), vol. 2, pp. 1145–1150. IEEE Service Center, Piscataway (2002)
Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), vol. 2, pp. 862–869. IEEE Press, Canberra (2003)
Storn, R.: Differential evolution homepage, http://www.icsi.berkeley.edu/~storn/code.html
Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: 2004 Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 1382–1389. IEEE Service Center, Portland (2004)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Robič, T., Filipič, B. (2005). DEMO: Differential Evolution for Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_36
Download citation
DOI: https://doi.org/10.1007/978-3-540-31880-4_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24983-2
Online ISBN: 978-3-540-31880-4
eBook Packages: Computer ScienceComputer Science (R0)