Skip to main content

DEMO: Differential Evolution for Multiobjective Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

Differential Evolution (DE) is a simple but powerful evolutionary optimization algorithm with many successful applications. In this paper we propose Differential Evolution for Multiobjective Optimization (DEMO) – a new approach to multiobjective optimization based on DE. DEMO combines the advantages of DE with the mechanisms of Pareto-based ranking and crowding distance sorting, used by state-of-the-art evolutionary algorithms for multiobjective optimization. DEMO is implemented in three variants that achieve competitive results on five ZDT test problems.

Keywords

  • Pareto Front
  • Multiobjective Optimization
  • Crossover Probability
  • Nondominated Solution
  • Nondominated Sorting

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    CrossRef  Google Scholar 

  2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

  3. Price, K.V., Storn, R.: Differential evolution – a simple evolution strategy for fast optimization. Dr. Dobb’s Journal 22, 18–24 (1997)

    Google Scholar 

  4. Lampinen, J.: A bibliography of differential evolution algorithm, http://www2.lut.fi/~jlampine/debiblio.htm

  5. Abbass, H.A., Sarker, R., Newton, C.: PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001), Piscataway, New Jersey, vol. 2, pp. 971–978. IEEE Service Center, Los Alamitos (2001)

    Google Scholar 

  6. Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Congress on Evolutionary Computation (CEC’2002), vol. 1, pp. 831–836. IEEE Computer Society Press, Piscataway (2002)

    Google Scholar 

  7. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)

    CrossRef  Google Scholar 

  8. Madavan, N.K.: Multiobjective optimization using a pareto differential evolution approach. In: Congress on Evolutionary Computation (CEC’2002), vol. 2, pp. 1145–1150. IEEE Service Center, Piscataway (2002)

    Google Scholar 

  9. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), vol. 2, pp. 862–869. IEEE Press, Canberra (2003)

    Google Scholar 

  10. Storn, R.: Differential evolution homepage, http://www.icsi.berkeley.edu/~storn/code.html

  11. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: 2004 Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 1382–1389. IEEE Service Center, Portland (2004)

    Google Scholar 

  12. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robič, T., Filipič, B. (2005). DEMO: Differential Evolution for Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics