Skip to main content

The Naive \({\mathbb M}\)ID\({\mathbb E}\)A: A Baseline Multi–objective EA

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

Estimation of distribution algorithms have been shown to perform well on a wide variety of single–objective optimization problems. Here, we look at a simple – yet effective – extension of this paradigm for multi–objective optimization, called the naive \({\mathbb M}\)ID\({\mathbb E}\)A. The probabilistic model in this specific algorithm is a mixture distribution, and each component in the mixture is a univariate factorization. Mixture distributions allow for wide–spread exploration of the Pareto front thus aiding the important preservation of diversity in multi–objective optimization. Due to its simplicity, speed, and effectiveness the naive \({\mathbb M}\)ID\({\mathbb E}\)A can well serve as a baseline algorithm for multi–objective evolutionary algorithms.

Keywords

  • Pareto Front
  • Knapsack Problem
  • Objective Space
  • Mixture Distribution
  • Pareto Optimal Front

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosman, P.A.N., Thierens, D.: Multi–objective optimization with diversity preserving mixture–based iterated density estimation evolutionary algorithms. International Journal of Approximate Reasoning 31, 259–289 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multi–objective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 174–188 (2003)

    CrossRef  Google Scholar 

  3. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) Parallel Problem Solving from Nature – PPSN VI, pp. 849–858. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  4. Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi–objective evolutionary optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) First International Conference on Evolutionary Multi–Criterion Optimization, pp. 284–298. Springer, Berlin (2001)

    Google Scholar 

  5. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1), 1–16 (1995)

    CrossRef  Google Scholar 

  6. Harik, G., Lobo, F., Goldberg, D.E.: The compact genetic algorithm. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 523–528. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  7. Knowles, J., Corne, D.: On metrics for comparing non–dominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 666–674. IEEE Press, Piscataway (2002)

    Google Scholar 

  8. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. binary parameters. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P., et al. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 178–187. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  9. Thierens, D., Bosman, P.A.N.: Multi–objective mixture–based iterated density estimation evolutionary algorithms. In: Spector, L., et al. (eds.) Proceedings of the GECCO–2001 Genetic and Evolutionary Computation Conference, pp. 663–670. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  10. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Graduate School of Engineering of the Air Force Institute of Technology, WPAFB, Ohio (1999)

    Google Scholar 

  11. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    CrossRef  Google Scholar 

  12. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., Grunert da Fonseca, V.: Why quality assessment of multiobjective optimizers is difficult. In: Langdon, W.B., et al. (eds.) Proceedings of the 2002 Genetic and Evolutionary Computation Conference, pp. 666–674. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  13. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosman, P.A.N., Thierens, D. (2005). The Naive \({\mathbb M}\)ID\({\mathbb E}\)A: A Baseline Multi–objective EA. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics