Skip to main content

Comparing Classical Generating Methods with an Evolutionary Multi-objective Optimization Method

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

For the past decade, many evolutionary multi-objective optimization (EMO) methodologies have been developed and applied to find multiple Pareto-optimal solutions in a single simulation run. In this paper, we discuss three different classical generating methods, some of which were suggested even before the inception of EMO methodologies. These methods specialize in finding multiple Pareto-optimal solutions in a single simulation run. On visual comparisons of the efficient frontiers obtained for a number of two and three-objective test problems, these algorithms are evaluated with an EMO methodology. The results bring out interesting insights about the strengths and weaknesses of these approaches. Further investigations of such classical generating methodologies and their evaluation should enable researchers to design a hybrid multi-objective optimization algorithm which may be better than each individual method.

Keywords

  • Test Problem
  • Multiobjective Optimization
  • Efficient Frontier
  • Sequential Quadratic Programming Method
  • Normal Boundary Intersection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal of Optimization 8(3), 631–657 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Das, I., Dennis, J.E.: An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. In: Proceedings of the Third World Congress on Structutal and Multidisciplinary Optimization (1999)

    Google Scholar 

  3. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  5. Deb, K., Mohan, M., Mishra, S.: Towards a quick computation of well-spread pareto-optimal solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the Congress on Evolutionary Computation (CEC-2002), pp. 825–830 (2002)

    Google Scholar 

  7. Messac, A., Mattson, C.A.: Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA Journal (in press)

    Google Scholar 

  8. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  9. Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. Journal of Optimization Theory and Applications 114(1), 209–222 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Timmel, G.: Ein stochastisches suchverrahren zur bestimmung der optimalen kompromisungen bei statischen polzkriteriellen optimierungsaufgaben. Wiss. Z. TH Ilmenau 6, 159–174 (1980)

    MathSciNet  Google Scholar 

  11. Timmel, G.: Modifikation eines statistischen suchverfahrens der vektoroptimierung. Wiss. Z. TH Ilmenau 5, 139–148 (1982)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shukla, P.K., Deb, K., Tiwari, S. (2005). Comparing Classical Generating Methods with an Evolutionary Multi-objective Optimization Method. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics