Abstract
For the past decade, many evolutionary multi-objective optimization (EMO) methodologies have been developed and applied to find multiple Pareto-optimal solutions in a single simulation run. In this paper, we discuss three different classical generating methods, some of which were suggested even before the inception of EMO methodologies. These methods specialize in finding multiple Pareto-optimal solutions in a single simulation run. On visual comparisons of the efficient frontiers obtained for a number of two and three-objective test problems, these algorithms are evaluated with an EMO methodology. The results bring out interesting insights about the strengths and weaknesses of these approaches. Further investigations of such classical generating methodologies and their evaluation should enable researchers to design a hybrid multi-objective optimization algorithm which may be better than each individual method.
Keywords
- Test Problem
- Multiobjective Optimization
- Efficient Frontier
- Sequential Quadratic Programming Method
- Normal Boundary Intersection
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal of Optimization 8(3), 631–657 (1998)
Das, I., Dennis, J.E.: An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. In: Proceedings of the Third World Congress on Structutal and Multidisciplinary Optimization (1999)
Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Deb, K., Mohan, M., Mishra, S.: Towards a quick computation of well-spread pareto-optimal solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the Congress on Evolutionary Computation (CEC-2002), pp. 825–830 (2002)
Messac, A., Mattson, C.A.: Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA Journal (in press)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. Journal of Optimization Theory and Applications 114(1), 209–222 (2002)
Timmel, G.: Ein stochastisches suchverrahren zur bestimmung der optimalen kompromisungen bei statischen polzkriteriellen optimierungsaufgaben. Wiss. Z. TH Ilmenau 6, 159–174 (1980)
Timmel, G.: Modifikation eines statistischen suchverfahrens der vektoroptimierung. Wiss. Z. TH Ilmenau 5, 139–148 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shukla, P.K., Deb, K., Tiwari, S. (2005). Comparing Classical Generating Methods with an Evolutionary Multi-objective Optimization Method. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-31880-4_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24983-2
Online ISBN: 978-3-540-31880-4
eBook Packages: Computer ScienceComputer Science (R0)
