Skip to main content

Many-Objective Optimization: An Engineering Design Perspective

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

Evolutionary multicriteria optimization has traditionally concentrated on problems comprising 2 or 3 objectives. While engineering design problems can often be conveniently formulated as multiobjective optimization problems, these often comprise a relatively large number of objectives. Such problems pose new challenges for algorithm design, visualisation and implementation. Each of these three topics is addressed. Progressive articulation of design preferences is demonstrated to assist in reducing the region of interest for the search and, thereby, simplified the problem. Parallel coordinates have proved a useful tool for visualising many objectives in a two-dimensional graph and the computational grid and wireless Personal Digital Assistants offer technological solutions to implementation difficulties arising in complex system design.

Keywords

  • Pareto Front
  • Multiobjective Optimization Problem
  • Multiobjective Evolutionary Algorithm
  • Brake Torque
  • True Pareto Front

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athans, M., Falb, P.: Optimal Control. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  2. Branke, T., Kaußler, T., Schmeck, H.: Guidance in evolutionary multiobjective optimization. Advances in Engineering Software 32, 499–507 (2001)

    CrossRef  MATH  Google Scholar 

  3. Branke, J., Deb, K.: Integrating User Preferences into Evolutionary Multi-Objective Optimization. KanGal Report Number 2004004

    Google Scholar 

  4. Censor, Y.: Pareto optimality in multiobjective problems. Applied Mathematics and Optimization 4, 41–59 (1977)

    CrossRef  MathSciNet  Google Scholar 

  5. Coello, C.A.C.: Handling preferences in evolutionary multiobjective optimization: a survey. In: IEEE Neural Networks Council (ed.) Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), vol. 1, pp. 30–37. IEEE Service Center, Piscataway (2000)

    CrossRef  Google Scholar 

  6. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

    MATH  Google Scholar 

  7. Cvetkovic, D., Parmee, I.C.: Preferences and their application in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 6(1), 42–57 (2002)

    CrossRef  Google Scholar 

  8. Deb, K.: Optimization for engineering design: Algorithms and examples. Prentice-Hall, New Delhi (1995)

    Google Scholar 

  9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2000) (2001a)

    MATH  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  11. Deb, K.: Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applications, pp. 263–292. Springer, London (2003)

    Google Scholar 

  12. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on relation favour. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  13. Farina, M., Amato, P.: On the optimal solution definition for many-criteria optimization problems, in J. Keller and O. Nasraoui (eds), Proceedings of the 2002 NAFIPS-FLINT International Conference, IEEE Service Center, Piscataway, New Jersey, pp. 233–238 (2002)

    Google Scholar 

  14. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. Morgan Kauffman Publishers, San Mateo (1993)

    Google Scholar 

  15. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms — Part I: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 26–37 (1998a)

    CrossRef  Google Scholar 

  16. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms — Part II: An application example. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 38–47 (1998b)

    CrossRef  Google Scholar 

  17. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  18. Gembicki, F.W.: Vector optimization for control with performance and parameter sensitivity indices, PhD Dissertation, Case Western Reserve Univ., Cleveland, Ohio, USA (1974)

    Google Scholar 

  19. Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1, 69–91 (1985)

    CrossRef  MATH  Google Scholar 

  20. Leary, S.J., Keane, A.J.: Global approximation and optimisation using adjoint computational fluid dynamics codes. AIAA journal 42(3), 631–641 (2004)

    CrossRef  Google Scholar 

  21. Lygoe, R.J., Fleming, P.J.: An Understanding of Fonseca & Fleming’s Preferability Operator with respect to the Decision Making Process in Multi-Objective Optimisation, ACSE Research Report 880, University of Sheffield, Sheffield, UK

    Google Scholar 

  22. Parker, S.G., Johnson, C.R., Beazley, D.: Computational steering software systems and strategies. IEEE Computational Science & Engineering 4(4), 50–59 (1997)

    CrossRef  Google Scholar 

  23. Purshouse, R.C., Fleming, P.J.: 2003a An adaptive divide-and-conquer methodology for evolutionary multi-criterion optimisation, in C. M. Fonseca, P. J. Fleming, E. Zitzler (2003)

    Google Scholar 

  24. Purshouse, R.C.: On the Evolutionary Optimisation of Many Objectives, PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK (2003)

    Google Scholar 

  25. Shenfield, A., Fleming, P.J.: A service oriented Architecture for Engineering Design Technical Report 877, Department of Automatic Control and Systems Engineering, University of Sheffield, UK

    Google Scholar 

  26. Shenfield, A., Alkarouri, M., Fleming, P.J.: Computational Steering of a Multi-Objective Genetic Algorithm using a PDA, 878, Department of Automatic Control and Systems Engineering, University of Sheffield, UK

    Google Scholar 

  27. Scott, D.W.: Multivariate Density Estimation: Theory. Practice, and Visualization. Wiley, New York (1992)

    CrossRef  MATH  Google Scholar 

  28. Tan, K.C., Khor, E.F., Lee, T.H., Sathikannan, R.: An evolutionary algorithm with advanced goal and priority specification for multi-objective optimization. Journal of Artificial Intelligence Research 18, 183–215 (2003)

    MATH  MathSciNet  Google Scholar 

  29. Todd, D.S., Sen, P.: Directed multiple objective search of design spaces using genetic algorithms and neural networks. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999), vol. 2, pp. 1738–1743. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  30. Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association 85, 664–675 (1990)

    CrossRef  Google Scholar 

  31. Zakian, V., Al-Naib, U.: Design of dynamical control systems by the method of inequalities. Proc. IEE 120, 1421–1427 (1973)

    Google Scholar 

  32. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleming, P.J., Purshouse, R.C., Lygoe, R.J. (2005). Many-Objective Optimization: An Engineering Design Perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics