Skip to main content

Exploring the Performance of Stochastic Multiobjective Optimisers with the Second-Order Attainment Function

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

The attainment function has been proposed as a measure of the statistical performance of stochastic multiobjective optimisers which encompasses both the quality of individual non-dominated solutions in objective space and their spread along the trade-off surface. It has also been related to results from random closed-set theory, and cast as a mean-like, first-order moment measure of the outcomes of multiobjective optimisers. In this work, the use of more informative, second-order moment measures for the evaluation and comparison of multiobjective optimiser performance is explored experimentally, with emphasis on the interpretability of the results.

Keywords

  • Covariance Function
  • Objective Space
  • Moment Measure
  • Multiobjective Genetic Algorithm
  • Empirical Covariance Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7, 117–132 (2003)

    CrossRef  Google Scholar 

  2. Goutsias, J.: Modeling random shapes: An introduction to random closed set theory. In: Haralick, R.M. (ed.) Mathematical Morphology: Theory and Hardware. Oxford Series in Optical & Imaging Sciences. Oxford University Press, New York (1996)

    Google Scholar 

  3. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, p. 213. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  4. Justel, A., Peña, D., Zamar, R.: A multivariate Kolmogorov-Smirnov test of goodness of fit. Statistics and Probability Letters 35, 251–259 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  6. Shaw, K.J., Nortcliffe, A.L., Thompson, M., Love, J., Fleming, P.: Assessing the performance of multiobjective genetic algorithms for optimization of a batch process scheduling problem. In: Proceedings of the Congress on Evolutionary Computation (CEC1999), Washington DC, vol. 1, pp. 37–45 (1999)

    Google Scholar 

  7. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications, 2nd edn. Wiley Series in Probability and Statistics. Wiley & Sons, Chichester (1995)

    MATH  Google Scholar 

  8. Good, P.I.: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses, 2nd edn. Springer Series in Statistics. Springer, New York (2000)

    MATH  Google Scholar 

  9. Bickel, P.J.: A distribution free version of the Smirnov two sample test in the p-variate case. The Annals of Mathematical Statistics 40, 1–23 (1969)

    CrossRef  MATH  Google Scholar 

  10. Barratt, C., Boyd, S.: Example of exact trade-offs in linear control design. IEEE Control Systems Magazine 9, 46–52 (1989)

    CrossRef  Google Scholar 

  11. Fonseca, C.M., Fleming, P.J.: Multiobjective optimal controller design with genetic algorithms. In: Proc. IEE Control 1994 International Conference, Warwick, U.K, vol. 1, pp. 745–749 (1994)

    Google Scholar 

  12. Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms made easy: selection, sharing and mating restriction. In: First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Sheffield, U.K., pp. 45–52 (1995)

    Google Scholar 

  13. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–200. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  14. Bentley, J.: Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing 4, 387–411 (1992)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fonseca, C.M., da Fonseca, V.G., Paquete, L. (2005). Exploring the Performance of Stochastic Multiobjective Optimisers with the Second-Order Attainment Function. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics