Skip to main content

Multi-objective Go with the Winners Algorithm: A Preliminary Study

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

This paper introduces a new algorithm to deal with multi-objective combinatorial and continuous problems. The algorithm is an extension of a previous one designed to deal with single objective combinatorial problems. The original purpose of the single objective version was to study in a rigorous way the properties the search graph of a particular problem needs to hold so that a randomized local search heuristic can find the optimum with high probability. The extension of these results to better understand multi-objective combinatorial problems seems to be a promising line of research. The work presented here is a first small step in this direction. A detailed description of the multi-objective version is presented along with preliminary experimental results on a well known combinatorial problem. The results show that the algorithm has the desired characteristics.

Keywords

  • Random Walk
  • Schedule Problem
  • Local Search
  • Flow Time
  • Dominance Relation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-objective Problems. Kluwer Academic Publishers, New York (2002)

    MATH  Google Scholar 

  2. Aldous, D., Vazirani, U.: Go with the winners algorithms. In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, pp. 492–501 (1994)

    Google Scholar 

  3. Carson, T.: Empirical and analitic approaches to understanding local search heuristics. PhD Thesis, University of California. San Diego, California (2001)

    Google Scholar 

  4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  5. Dimitriou, A., Impagliazzo, R.: Towards a rigorous analysis of local optimization algorithms. In: Proceedings of the 25th ACM Symposium on the Theory of Computing (1996)

    Google Scholar 

  6. Dimitriou, A., Impagliazzo, R.: Go-with-the-winner algorithms for graph bisection. In: Proceedings of the 9th Annual SIAM Symposium on Discrete Algorithms, pp. 510–520 (1998)

    Google Scholar 

  7. Brizuela, C.A., Aceves, R.: Experimental genetic operators analysis for the multi-objective permutation flowshop. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 578–592. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  8. Aceves, R., Brizuela, C.A.: Análisis Experimental de Operadores Genéticos en NSGA-II para un Problema de Calendarización Multi-objetivo. In: Botello, S., Hernández, A., Coello, C. (eds.) Congreso Mexicano de Computación Evolutiva, pp. 55–66 (2003)

    Google Scholar 

  9. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  10. Isibuchi, H., Murata, T.: Multi-objective Genetic Local Search Algorithm. In: Proceedings of the 1996 International Conference on Evolutionary Computation, pp. 119–124 (1996)

    Google Scholar 

  11. Tamaki, H., Nishino, E.: Genetic Algorithm approach to multi-objective scheduling problems with regular and non-regular objective functions. In: Proceedings of IFAC LSS 1998, pp. 289–294 (1998)

    Google Scholar 

  12. Bagchi, T.P.: Multiobjective Scheduling by Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  13. Srinivas, N., Deb, K.: Multi-Objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation 2(3), 221–248 (1995)

    CrossRef  Google Scholar 

  14. Serafini, P.: Simulated Annealing for Multiple Objective Optimization Problems. In: Tzeng, G., Wang, H., Wen, U., Yu, P. (eds.) Proceedings of the Tenth International Conference on Multiple Criteria Decision Making: Expand and Enrich the Domains of Thinking and Application, vol. 1, pp. 283–292 (1994)

    Google Scholar 

  15. Thompson, M.: Application of Multi Objective Evolutionary Algorithms to Analogue Filter Tuning. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 546–559. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  16. Mariano, C.E., Morales, E.: MOAQ an Ant-Q Algorithm for Multiple Objective Optimization Problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Genetic and Evolutionary Computing COnference (GECCO 1999), vol. 1, pp. 894–901 (1999)

    Google Scholar 

  17. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw Hill, New York (1999)

    Google Scholar 

  18. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  19. Hansen, M.P.: Tabu Search in Multiobjective Optimisation: MOTS. In: Proceedings of the 13th International Conference on Multiple Criteria Decision Making, MCDM1997 (1997)

    Google Scholar 

  20. Gandibleux, X., Mezdaoui, N., Fréville, A.: A Tabu Search Procedure to Solve Combinatorial Optimisation Problems. In: Caballero, R., Ruiz, F., Steuer, R.E. (eds.) A Collection of Test Problems for Constrained Global Optimization Algorithms. Lecture Notes in Economics and Mathematical Systems, vol. 455, pp. 291–300. Springer, Heidelberg (1997)

    Google Scholar 

  21. Binh, T.T., Korn, U.: An evolution strategy for the multiobjective optimization. In: The Second International Conference on Genetic Algorithms (Mendel 1996), pp. 23–28 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brizuela, C.A., Gutiérrez, E. (2005). Multi-objective Go with the Winners Algorithm: A Preliminary Study. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics