Abstract
Nearly all Multi-Objective Evolutionary Algorithms (MOEA) rely on random generation of initial population. In large and complex search spaces, this random method often leads to an initial population composed of infeasible solutions only. Hence, the task of a MOEA is not only to converge towards the Pareto-optimal front but also to guide the search towards the feasible region. This paper proposes the incorporation of a novel method for constructing initial populations into existing MOEAs based on so-called Pareto-Front-Arithmetics (PFA). We will provide experimental results from the field of embedded system synthesis that show the effectiveness of our proposed methodology.
Keywords
- Initial Population
- Task Graph
- Decision Vector
- Design Space Exploration
- Multiobjective Evolutionary Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Ltd., Chichester (2001)
Haubelt, C., Teich, J.: Accelerating Design Space Exploration Using Pareto-Front Arithmetics. In: Proceedings of Asia and South Pacific Design, Automation and Conference, Kitakyushu, Japan, pp. 525–531 (2003)
Gandibleux, X., Morita, H., Katoh, N.: The Supported Solutions Used as a Genetic Information in a Population Heuristic. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 429–442. Springer, Heidelberg (2001)
Gandibleux, X., Morita, H., Katoh, N.: Use of a Genetic Heritage for Solving the Assignment Problem with Two Objectives. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 43–57. Springer, Heidelberg (2003)
Josephson, J.R., Chandrasekaran, B., Carroll, M., Iyer, N., Wasacz, B., Rizzoni, G., Li, Q., Erb, D.A.: An Architecture for Exploring Large Design Spaces. In: Proceedings of the fifteenth national Conference on Artificial intelligence/Innovative applications of artificial intelligence (AI), Madison, USA, pp. 143–150 (1998)
Abraham, S.G., Rau, B.R., Schreiber, R.: Fast Design Space Exploration Through Validity and Quality Filtering of Subsystem Designs. Technical report, Hewlett Packard, Compiler and Architecture Research, HP Laboratories Palo Alto (2000)
Szymanek, R., Catthoor, F., Kuchcinski, K.: Time-Energy Design Space Exploration for Multi-Layer Memory Architectures. In: Proceedings of the Design, Automation and Test in Europe Conference, Paris, France, pp. 10318–10323 (2004)
Blickle, T.: Theory of Evolutionary Algorithms and Application to System Synthesis. PhD thesis, Swiss Federal Institute of Technology Zurich (1996)
Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Graduate School of Engineering, Air Force Institute of Technology (1999)
Teich, J.: Pareto-Front Exploration with Uncertain Objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)
Blickle, T., Teich, J., Thiele, L.: System-Level Synthesis Using Evolutionary Algorithms. In: Gupta, R. (ed.) Design Automation for Embedded Systems, vol. 3, pp. 23–62. Kluwer Academic Publishers, Boston (1998)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Eidgenössische Technische Hochschule Zürich (1999)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA - A Platform and Programming Language Independent Interface for Search Algorithms. In: Proceedings of the Conference on Evolutionary Multi-Criterion Optimization (EMO2003), Faro, Protugal, pp. 494–508 (2003)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Evolutionary Methods for Design, Optimisation, and Control, Barcelona, Spain, pp. 19–26 (2002)
Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case Study. In: Proceedings of Parallel Problem Solving from Nature – PPSN-V, Amsterdam, The Netherlands, pp. 292–301 (1998)
Gunawan, S., Farhang-Mehr, A., Azarm, S.: Multi-Level Multi-Objective Genetic Algorithm Using Entropy to Preserve Diversity. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 148–161. Springer, Heidelberg (2003)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7, 117–132 (2003)
Deb, K.: Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation 7, 205–230 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haubelt, C., Gamenik, J., Teich, J. (2005). Initial Population Construction for Convergence Improvement of MOEAs. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-31880-4_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24983-2
Online ISBN: 978-3-540-31880-4
eBook Packages: Computer ScienceComputer Science (R0)
