Skip to main content

Initial Population Construction for Convergence Improvement of MOEAs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3410)

Abstract

Nearly all Multi-Objective Evolutionary Algorithms (MOEA) rely on random generation of initial population. In large and complex search spaces, this random method often leads to an initial population composed of infeasible solutions only. Hence, the task of a MOEA is not only to converge towards the Pareto-optimal front but also to guide the search towards the feasible region. This paper proposes the incorporation of a novel method for constructing initial populations into existing MOEAs based on so-called Pareto-Front-Arithmetics (PFA). We will provide experimental results from the field of embedded system synthesis that show the effectiveness of our proposed methodology.

Keywords

  • Initial Population
  • Task Graph
  • Decision Vector
  • Design Space Exploration
  • Multiobjective Evolutionary Algorithm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  2. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Ltd., Chichester (2001)

    MATH  Google Scholar 

  3. Haubelt, C., Teich, J.: Accelerating Design Space Exploration Using Pareto-Front Arithmetics. In: Proceedings of Asia and South Pacific Design, Automation and Conference, Kitakyushu, Japan, pp. 525–531 (2003)

    Google Scholar 

  4. Gandibleux, X., Morita, H., Katoh, N.: The Supported Solutions Used as a Genetic Information in a Population Heuristic. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 429–442. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  5. Gandibleux, X., Morita, H., Katoh, N.: Use of a Genetic Heritage for Solving the Assignment Problem with Two Objectives. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 43–57. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Josephson, J.R., Chandrasekaran, B., Carroll, M., Iyer, N., Wasacz, B., Rizzoni, G., Li, Q., Erb, D.A.: An Architecture for Exploring Large Design Spaces. In: Proceedings of the fifteenth national Conference on Artificial intelligence/Innovative applications of artificial intelligence (AI), Madison, USA, pp. 143–150 (1998)

    Google Scholar 

  7. Abraham, S.G., Rau, B.R., Schreiber, R.: Fast Design Space Exploration Through Validity and Quality Filtering of Subsystem Designs. Technical report, Hewlett Packard, Compiler and Architecture Research, HP Laboratories Palo Alto (2000)

    Google Scholar 

  8. Szymanek, R., Catthoor, F., Kuchcinski, K.: Time-Energy Design Space Exploration for Multi-Layer Memory Architectures. In: Proceedings of the Design, Automation and Test in Europe Conference, Paris, France, pp. 10318–10323 (2004)

    Google Scholar 

  9. Blickle, T.: Theory of Evolutionary Algorithms and Application to System Synthesis. PhD thesis, Swiss Federal Institute of Technology Zurich (1996)

    Google Scholar 

  10. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Graduate School of Engineering, Air Force Institute of Technology (1999)

    Google Scholar 

  11. Teich, J.: Pareto-Front Exploration with Uncertain Objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  12. Blickle, T., Teich, J., Thiele, L.: System-Level Synthesis Using Evolutionary Algorithms. In: Gupta, R. (ed.) Design Automation for Embedded Systems, vol. 3, pp. 23–62. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  13. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Eidgenössische Technische Hochschule Zürich (1999)

    Google Scholar 

  14. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA - A Platform and Programming Language Independent Interface for Search Algorithms. In: Proceedings of the Conference on Evolutionary Multi-Criterion Optimization (EMO2003), Faro, Protugal, pp. 494–508 (2003)

    Google Scholar 

  15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Evolutionary Methods for Design, Optimisation, and Control, Barcelona, Spain, pp. 19–26 (2002)

    Google Scholar 

  16. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case Study. In: Proceedings of Parallel Problem Solving from Nature – PPSN-V, Amsterdam, The Netherlands, pp. 292–301 (1998)

    Google Scholar 

  17. Gunawan, S., Farhang-Mehr, A., Azarm, S.: Multi-Level Multi-Objective Genetic Algorithm Using Entropy to Preserve Diversity. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 148–161. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7, 117–132 (2003)

    CrossRef  Google Scholar 

  19. Deb, K.: Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation 7, 205–230 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haubelt, C., Gamenik, J., Teich, J. (2005). Initial Population Construction for Convergence Improvement of MOEAs. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics