Advertisement

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains

  • Conrado Daws
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3407)

Abstract

We present a language-theoretic approach to symbolic model checking of PCTL over discrete-time Markov chains. The probability with which a path formula is satisfied is represented by a regular expression. A recursive evaluation of the regular expression yields an exact rational value when transition probabilities are rational, and rational functions when some probabilities are left unspecified as parameters of the system. This allows for parametric model checking by evaluating the regular expression for different parameter values, for instance, to study the influence of a lossy channel in the overall reliability of a randomized protocol.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Bergstra, J., Fokkink, W., Ponse, A.: Process algebra with recursive operations. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebrea. Elsevier Science, Amsterdam (2001)Google Scholar
  3. 3.
    Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with iteration and nesting. The Computer Journal 37(4), 243–258 (1994)CrossRefGoogle Scholar
  4. 4.
    Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs in Computer Science. Springer, Heidelberg (1988)Google Scholar
  5. 5.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Bohnenkamp, H., van der Stok, P., Hermanns, H., Vaandrager, F.: Cost-optimization of the IPv4 zeroconf protocol. In: Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN 2003), June 2003, pp. 531–540. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  7. 7.
    Brzozowsky, J.: Derivatives of regular expressions. Journal of ACM 11(4) (1964)Google Scholar
  8. 8.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D’Argenio, P., Jeannet, B., Jensen, H., Larsen, K.: Reachability analysis of probabilistic systems by successive refinements. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 29–56. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    D’Argenio, P., Jeannet, B., Jensen, H., Larsen, K.: Reduction and refinement strategies for probabilistic analysis. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, p. 57. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Gordon, M.J.C.: HOL: A proof generating system for higher-order logic. In: Birtwistle, G., Subrahmanyam, P.A. (eds.) VLSI Specification, Verification and Synthesis, pp. 73–128. Kluwer Academic Publishers, Boston (1988)Google Scholar
  12. 12.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL (A theorem-proving environment for higher order logic). Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  13. 13.
    Gramond, Rodger: Using JFLAP to interact with theorems in automata theory. SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education) 31 (1999)Google Scholar
  14. 14.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and probability. Formal Aspects of Computing 6(5), 512–535 (1994)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hopcroft, J.E., Motwani, R.R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Longman, Reading (2000)Google Scholar
  16. 16.
    Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University of Cambridge (2002)Google Scholar
  17. 17.
    Jeannet, B., D’Argenio, P., Larsen, K.: Rapture: A tool for verifying Markov Decision Processes. In: I. Cerna, editor, Tools Day 2002, Brno, Czech Republic, Technical Report. Faculty of Informatics, Masaryk University Brno (2002)Google Scholar
  18. 18.
    JFLAP (java formal languages and automata package) web page, http://www.cs.duke.edu/~rodger/tools/jflap/
  19. 19.
    Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Graduate Texts in Mathematics, 2nd edn. Springer, Heidelberg (1976)Google Scholar
  20. 20.
    Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number generation. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent Results. Academic Press, New York (1976)Google Scholar
  21. 21.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Conrado Daws
    • 1
  1. 1.Nijmegen Institure for Computing and Information SciencesUniversity of NijmegenThe Netherlands

Personalised recommendations