Finite Difference Approximation of an Elliptic Interface Problem with Variable Coefficients

  • Boško S. Jovanović
  • Lubin G. Vulkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)


General elliptic interface problem with variable coefficients and curvilinear interface is transformed into analogous problem with rectilinear interface. For the numerical solution of transformed problem a finite difference scheme with averaged right–hand side is proposed. Convergence rate estimate in discrete W 2 1 norm, compatible with the smoothness of data, is obtained.


Boundary Value Problem Analogous Problem Hermite Interpolation Interface Problem Dirac Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bramble, J.H., Hilbert, S.R.: Bounds for a class of linear functionals with application to Hermite interpolation. Numer. Math. 16, 362–369 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brayanov, I.A., Vulkov, L.G.: Homogeneous difference schemes for the heat equation with concentrated capacity. Zh. vychisl. mat. mat. fiz. 39, 254–261 (1999) (in Russian)MathSciNetGoogle Scholar
  3. 3.
    Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34, 441–463 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions. Communs Partial Differential Equations 19, 1309–1364 (1993)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dauge, M.: Elliptic boundary value problems on corner domains. Lecture Notes in Mathematics. Springer, Berlin (1988)zbMATHGoogle Scholar
  6. 6.
    Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston (1985)zbMATHGoogle Scholar
  7. 7.
    Jovanović, B.S.: Finite difference method for boundary value problems with weak solutions. In: Posebna izdanja Mat. Instituta., Belgrade, vol. 16 (1993)Google Scholar
  8. 8.
    Jovanović, B.S., Kandilarov, J.D., Vulkov, L.G.: Construction and convergence of difference schemes for a model elliptic equation with Dirac delta function coefficient. In: Vulkov, L.G., Waśniewski, J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 1988, pp. 431–438. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Jovanović, B.S., Popović, B.Z.: Convergence of a finite difference scheme for the third boundary–value problem for an elliptic equation with variable coefficients. Comp. Methods Appl. Math. 1(4), 356–366 (2001)Google Scholar
  10. 10.
    Jovanović, B.S., Vulkov, L.G.: Operator’s approach to the problems with concentrated factors. In: Vulkov, L.G., Waśniewski, J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 1988, pp. 439–450. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Jovanović, B.S., Vulkov, L.G.: On the convergence of finite difference schemes for the heat equation with concentrated capacity. Numer. Math. 89(4), 715–734 (2001)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Jovanović, B.S., Vulkov, L.G.: On the convergence of finite difference schemes for hyperbolic equations with concentrated factors. SIAM J. Numer. Anal. 41(2), 516–538 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lazarov, R.D., Makarov, V.L., Samarskiĭ, A.A.: Applications of exact difference schemes for construction and studies of difference schemes on generalized solutions. Math. Sbornik 117, 469–480 (1982) (in Russian)Google Scholar
  14. 14.
    Lax, P., Milgram, A.N.: Parabolic equations. Annals of Mathematics Studies, vol. 33, pp. 167–190. Princeton University Press, Princeton (1954)Google Scholar
  15. 15.
    Lykov, A.V.: Heat–mass transfer. Energiya, Moscow (1978) (in Russian)Google Scholar
  16. 16.
    Samarskiĭ, A.A.: Theory of Difference Schemes. Nauka, Moscow (1989) (in Russian)Google Scholar
  17. 17.
    Samarskiĭ, A.A., Lazarov, R.D., Makarov, V.L.: Difference schemes for differential equations with generalized solutions. Vysshaya Shkola, Moscow (1987) (in Russian)Google Scholar
  18. 18.
    Vabishchevich, P.N.: Iterative methods for solving convection–diffusion problem. Comp. Methods Appl. Math. 2(4), 410–444 (2002)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Vulkov, L.: Application of Steklov–type eigenvalues problems to convergence of difference schemes for parabolic and hyperbolic equation with dynamical boundary conditions. LNCS, vol. 1196, pp. 557–564. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Wloka, J.: Partial differential equations. Cambridge Univ. Press, Cambridge (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Boško S. Jovanović
    • 1
  • Lubin G. Vulkov
    • 2
  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia and Montenegro
  2. 2.Department of MathematicsUniversity of RousseRousseBulgaria

Personalised recommendations