Address Extraction: Extraction of Location-Based Information from the Web

  • Wentao Cai
  • Shengrui Wang
  • Qingshan Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3399)


Updating and retrieving location-based data is an important problem in Location-Based Service (LBS) applications. The Web is a valuable pool of location-based information. Such information can be retrieved and extracted on the basis of corresponding postal addresses. This paper proposes an information extraction method to help collect location-based information from the Web automatically. The proposal applies an ontology-based conceptual information retrieval approach combined with graph matching techniques. Experimental evaluation shows that the method yields high recall and precision results.


Graph Match Text Segment Postal Address Concept Node Ontology Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, H.: The Vocabulary Problem in Collaboration of Text from Electronic Meetings. IEEE Computer, Special Issue On CSCW 27(5) (1994)Google Scholar
  2. 2.
    Furnas, G.W.: The Vocabulary Problem in Human-System Communication. Communications of the ACM 30(11) (1987)Google Scholar
  3. 3.
    Grishman, R.: Information Extraction: Techniques and Challenges. In: Pazienza, M.T. (ed.) SCIE 1997. LNCS, vol. 1299. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Chinchor, N.: MUC-7 Named Entity Task Definition. In: Proceedings of the 7th Message Understanding Conference, MUC-7 (1997)Google Scholar
  5. 5.
    Morimoto, Y., Aono, M., Houle, M.: Extracting Spatial Knowledge from the Web. In: Proceedings of the 2003 IEEE Symposium on Applications and the Internet (2003)Google Scholar
  6. 6.
    Sagara, T., Kitsuregawa, M.: Yellow Page Driven Methods of Collecting and Scoring Spatial Web Documents. In: Proceedings of the Workshop on Geographic Information Retrieval, SIGIR (2004)Google Scholar
  7. 7.
    Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of the 1st International Conference on Formal Ontology in Information Systems (1998)Google Scholar
  8. 8.
    Chen, H., Schatz, B.R.: Semantic Retrieval for the NCSA Mosaic. In: Proceedings of the 2nd International World Wide Web Conference (1994)Google Scholar
  9. 9.
    Chen, H., Martinez, J., Ng, T., Schatz, B.R.: A Concept Space Approach to Addressing the Vocabulary Problem in Scientific Information Retrieval: An Experiment on the Worm Community System. Journal of the American Society for Information Science 48 (1997)Google Scholar
  10. 10.
    Loh, S., Wives, L.K., de Oliveira, J.P.M.: Concept-Based Knowledge Discovery in Texts Extracted from the Web. ACM SIGKDD Explorations 1(1) (2000)Google Scholar
  11. 11.
    Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison- Wesley, reading (1984)zbMATHGoogle Scholar
  12. 12.
    Gruber, T.: Toward Principles for Design of Ontologies Used for Knowledge Sharing. International Journal of Human and Computer Studies 43(5) (1993)Google Scholar
  13. 13.
    Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual graph matching for semantic search. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Montes-y-Gomez, M., Gelbukh, A., Lopez-Lopez, A., Baeza-Yates, R.: Flexible Comparison of Conceptual GraphsWork done under partial support of CONACyT, CGEPI-IPN, and SNI, Mexico. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, p. 102. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Ullman, J.: An Algorithm for Subgraph Isomorphism. Journal of the ACM 23 (1976)Google Scholar
  16. 16.
    Corneil, D., Gotlieb, C.: An Efficient Algorithm for Graph Isomorphism. Journal of the Association for Computing Machinery 17 (1970)Google Scholar
  17. 17.
    Hlaoui, A., Wang, S.: A New Algorithm for Inexact Graph Matching. In: Proceedings of the 16th International Conference on Pattern Recognition, ICPR 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wentao Cai
    • 1
  • Shengrui Wang
    • 1
  • Qingshan Jiang
    • 2
  1. 1.Department of Computer ScienceUniversite de SherbrookeSherbrookeCanada
  2. 2.Software SchoolXiamen UniversityXiamen, FujianP.R. China

Personalised recommendations