Abstract
In this paper some of the basic concepts of system theory are presented in a formal way. This is done with the help of the formal modeling language petri-nets. An example out of the transportation is used to illustrate the discussed concepts.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Krieger, D.J.: Einführung in die allgemeine Systemtheorie, 2. Auflage. Wilhelm Fink Verlag, UTB für Wissenschaft: Uni-Taschenbücher (1904), München (1996)
Luhmann, N.: Soziale Systeme. Grundriß einer allgemeinen Theorie. Frankfurt am Main (1984)
Petri, C.A.: Kommunikation mit Automaten. Schriften des Institutes für instrumentelle Mathematik, Bonn (1962)
Schnieder, E.: Prozeßinformatik - Einführung mit Petrinetzen. Vieweg-Verlag, Braunschweig, 2. erweiterte Auflage (1993)
von Bertalanffy, L.: General System Theory: Foundations, Development, Applications. George Braziller (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Schnieder, E., Müller, J.R. (2005). A Formal Description of the Basic Concepts of System Theory for Transportation. In: Kreowski, HJ., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds) Formal Methods in Software and Systems Modeling. Lecture Notes in Computer Science, vol 3393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31847-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-31847-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24936-8
Online ISBN: 978-3-540-31847-7
eBook Packages: Computer ScienceComputer Science (R0)
