Advertisement

An Interactive Multi-user System for Simultaneous Graph Drawing

  • Stephen G. Kobourov
  • Chandan Pitta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

In this paper we consider the problem of simultaneous drawing of two graphs. The goal is to produce aesthetically pleasing drawings for the two graphs by means of a heuristic algorithm and with human assistance. Our implementation uses the DiamondTouch table, a multi-user, touch-sensitive input device, to take advantage of direct physical interaction of several users working collaboratively. The system can be downloaded at http://dt.cs.arizona.edu where it is also available as an applet.

References

  1. 1.
    Anderson, D., Anderson, E., Lesh, N., Marks, J., Perlin, K., Ratajczak, D., Ryall, K.: Human-guided simple search: Combining information visualization and heuristic search. In: Proceedings of the Workshop on New Paradigms in Information Visualization and Manipulation, pp. 21–25 (1999)Google Scholar
  2. 2.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. In: 8th Workshop on Algorithms and Data Structures, pp. 243–255 (2003)Google Scholar
  3. 3.
    Collberg, C., Kobourov, S.G., Kobes, S., Smith, B., Trush, S., Yee, G.: Tetratetris: An application of multi-user touch-based human-computer interaction. In: 9th International Conference on Human-Computer Interaction (INTERACT), pp. 81–88 (2003)Google Scholar
  4. 4.
    Dietz, P., Leigh, D.: Diamondtouch: A multi-user touch technology. In: 14th ACM Symposium on User Interface Software and Technology, pp. 219–226 (2001)Google Scholar
  5. 5.
    Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. Journal of Graph Algorithms and Applications 4(3), 5–17 (2000)MATHMathSciNetGoogle Scholar
  6. 6.
    Erten, C., Kobourov, S.G., Navabia, A., Le., V.: Simultaneous graph drawing: Layout algorithms and visualization schemes. In: 11th Symposium on Graph Drawing (GD), pp. 437–449 (2003)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Proceedings of the 11th Symposium on Graph Drawing (GD), pp. 13–24 (2003)Google Scholar
  9. 9.
    Klau, G.W., Lesh, N.B., Marks, J.W., Mitzenmacher, M., Schafer, G.T.: The hugs platform: A toolkit for interactive optimization. In: Advanced Visual Interfaces, AVI (2002)Google Scholar
  10. 10.
    Klingner, J., Amenta, N.: Case study: Visualization of evolutionary trees. In: IEEE Symposium on Information Visualization (INFOVIS), pp. 71–74 (2002)Google Scholar
  11. 11.
    Lesh, N., Marks, J., Patrignani, M.: Interactive partitioning. In: Proceedings of the Symposium on Graph Drawing (GD), pp. 31–36 (2000)Google Scholar
  12. 12.
    Liebers, A.: Planarizing graphs - a survey and annotated bibliography. Journal of Graph Algorithms and Applications 5(1), 1–74 (2001)MathSciNetGoogle Scholar
  13. 13.
    Munzner, T., Guimbretiere, F., Tasiran, S., Zhang, L., Zhou, Y.: Treejuxtaposer: scalable tree comparison using focus+context with guaranteed visibility. ACM Transactions on Graphics 22(3), 453–462 (2003)CrossRefGoogle Scholar
  14. 14.
    Wu, M., Balakrishnan, R.: Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. In: ACM UIST Symposium on User Interface Software and Technology, pp. 192–202 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stephen G. Kobourov
    • 1
  • Chandan Pitta
    • 2
  1. 1.Department of Computer ScienceUniversity of Arizona 
  2. 2.Department of Electrical and Computer EngineeringUniversity of Arizona 

Personalised recommendations