3D Visualization of Semantic Metadata Models and Ontologies

  • Charalampos Papamanthou
  • Ioannis G. Tollis
  • Martin Doerr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


We propose an algorithm for the 3D visualization of general ontology models used in many applications, such as semantic web, entity-relationship diagrams and other database models. The visualization places entities in the 3D space. Previous techniques produce drawings that are 2-dimensional, which are often complicated and hard to comprehend. Our technique uses the third dimension almost exclusively for the display of the isa relationships (links) while the property relationships (links) are placed on some layer (plane). Thus the semantic difference between isa links and property links, which should be as vertical or as horizontal as possible respectively, is emphasized. Special reference is made on a certain model, the CIDOC Conceptual Reference Model.


  1. 1.
    Telea, A., Frasincar, F., Houben, G.-J.: Visualizing of RDF(S) based Information. In: Proc. IEEE IV 2003. IEEE CS Press, Los Alamitos (2003)Google Scholar
  2. 2.
    Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating semantic web contents with protege-2000. IEEE Intelligent Systems 16(2), 60–71 (2001)CrossRefGoogle Scholar
  3. 3.
    Sure, Y., Staab, S., Angele, J.: OntoEdit: Guiding Ontology Development by Methodology and Inferencing. In: Proceedings of the International Conference on Ontologies, Databases and Applications of SEmantics ODBASE 2002 (2002)Google Scholar
  4. 4.
    Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization. M. Kaufmann, San Francisco (1999)Google Scholar
  5. 5.
    Pietriga, E.: Isaviz: a visual environment for browsing and authoring rdf models. In: The Eleventh International World Wide Web Conference, Developer’s day (2002)Google Scholar
  6. 6.
    Frodo RDFS Visualization Tool,
  7. 7.
    Lagoze, C., Hunter, J.: The ABC Ontology and Model. In: Proceedings of the International Conference on Dublin Core and Metadata Applications 2001, pp. 160–176 (2001)Google Scholar
  8. 8.
    Crofts, N., Doerr, M., Gill, T., Stead, S., Stiff, M.(eds.): Definition of the CIDOC Conceptual Reference Model (March 2004) (3.4.10)Google Scholar
  9. 9.
    Doerr, M.: The CIDOC CRM – An Ontological Approach to Semantic Interoperability of Metadata. AI Magazine 4(1) (2003)Google Scholar
  10. 10.
    Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing – Algorithms for the Visualization of Graphs (1999)Google Scholar
  11. 11.
    Gausner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A Technique for Drawing Directed Graphs. IEEE Trans. Softw. Eng. 19, 214–230 (1993)CrossRefGoogle Scholar
  12. 12.
    Bellare, M., Rogaway, P.: The complexity of approximating a nonlinear program. Journal of Mathematical Programming B 69(3), 429–441Google Scholar
  13. 13.
    Eades, P., Lin, X.: Spring Algorithms and Symmetry. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 109–112. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Fruchterman, T., Reingold, E.: Graph Drawing by Force Directed Platcement. Softw.-Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  15. 15.
    Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Inform. Process. Lett. 31, 7–15 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kamada, T.: Visualizing Abstract Objects and Relations. World Scientific Series in Computer Science (1989)Google Scholar
  17. 17.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical systems. IEEE Trans. Syst. Man Cybern. SMC-11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Papakostas, A., Tollis, I.G.: Algorithms for Incremental Orthogonal Graph Drawing in Three Dimensions. J. Graph Algorithms Appl. 3(4), 81–115Google Scholar
  19. 19.
    Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings. Comput. Geom. 9(1-2), 83–110 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Papakostas, A., Tollis, I.G.: Interactive Orthogonal Graph Drawing. IEEE Trans. Computers 47(11), 1297–1309 (1998)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom. 7, 381–401 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W H Freeman & Co, New York (1979)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Charalampos Papamanthou
    • 1
    • 2
  • Ioannis G. Tollis
    • 1
    • 2
  • Martin Doerr
    • 2
  1. 1.Department of Computer ScienceUniversity of CreteHeraklionGreece
  2. 2.Institute of Computer ScienceFORTHHeraklionGreece

Personalised recommendations