Advertisement

Train Tracks and Confluent Drawings

  • Peter Hui
  • Marcus Schaefer
  • Daniel Štefankovič
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

Confluent graphs capture the connection properties of train tracks, offering a very natural generalization of planar graphs, and – as the example of railroad maps shows – are an important tool in graph visualization. In this paper we continue the study of confluent graphs, introducing strongly confluent graphs and tree-confluent graphs. We show that strongly confluent graphs can be recognized in NP (the complexity of recognizing confluent graphs remains open). We also give a natural elimination ordering characterization of tree-confluent graphs which shows that they form a subclass of the chordal bipartite graphs, and can be recognized in polynomial time.

References

  1. 1.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  2. 2.
    Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visualizing non-planar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Eppstein, D.: Personal communication (2004)Google Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods 4(3), 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Golombic, M., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J. Graph Theory 2, 155–163 (1978)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Penner, R.C., Harer, J.L.: Combinatorics of train tracks. Annals of mathematics studies, vol. 125. Princeton University Press, Princeton (1992)Google Scholar
  7. 7.
    Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J. Comput. System Sci. 67(2), 365–380 (2003); Special issue on STOC 2002, Montreal, QCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Hui
    • 1
  • Marcus Schaefer
    • 1
  • Daniel Štefankovič
    • 2
  1. 1.Department of Computer ScienceDePaul UniversityChicago
  2. 2.Department of Computer ScienceUniversity of ChicagoChicago

Personalised recommendations