Dynamic Graph Drawing of Sequences of Orthogonal and Hierarchical Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


In this paper we introduce two novel algorithms for drawing sequences of orthogonal and hierarchical graphs while preserving the mental map. Both algorithms can be parameterized to trade layout quality for dynamic stability. In particular, we had to develop new metrics which work upon the intermediate results of layout phases. We discuss some properties of the resulting animations by means of examples.


Graph Sequence Graph Draw Importance Function Edge Crossing Hierarchical Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bastert, O., Matuszewski, C.: Layered drawings of digraphs. In: Drawing Graphs [11]. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-Driven Orthogonal Layout. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 1–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Wagner, D.: A Bayesian paradigm for dynamic graph layout. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Branke, J.: Dynamic graph drawing. In: Drawing Graphs [11]. Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: Dynamic graph drawings: Trees, series-parallel digraphs, and st-digraphs. SIAM Journal on Computing 24(5) (1995)Google Scholar
  6. 6.
    Collberg, C., Kobourov, S.G., Nagra, J., Pitts, J., Wampler, K.: A system for graph-based visualization of the evolution of software. In: Proc. of ACM Symposium on Software Visualization SOFTVIS 2003, San Diego, ACM SIGGRAPH (2003)Google Scholar
  7. 7.
    Diehl, S., Görg, C.: Graphs, They are Changing – Dynamic Graph Drawing for a Sequence of Graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Diehl, S., Görg, C., Kerren, A.: Preserving the Mental Map using Foresighted Layout. In: Proceedings of Joint Eurographics – IEEE TCVG Symposium on Visualization VisSym 2001. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Eiglsperger, M., Kaufmann, M.: Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Size. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 124–138. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph Animations with Evolving Layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  12. 12.
    North, S.C.: Incremental Layout in DynaDAG. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.FR InformatikSaarland UniversitySaarbrückenGermany
  2. 2.Catholic University Eichstätt, InformatikEichstättGermany

Personalised recommendations