Additional PC-Tree Planarity Conditions

  • John M. Boyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

Recent research efforts have produced new algorithms for solving planarity-related problems. One such method performs vertex addition using the PC-tree data structure, which is similar to but simpler than the well-known PQ-tree. For each vertex, the PC-tree is first checked to see if the new vertex can be added without violating certain planarity conditions; if the conditions hold, the PC-tree is adjusted to add the new vertex and processing continues. The full set of planarity conditions are required for a PC-tree planarity tester to report only planar graphs as planar. This paper provides further analyses and new planarity conditions needed to produce a correct planarity algorithm with a PC-tree.

References

  1. 1.
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. Journal of the Association for Computing Machinery 21, 549–568 (1974)MATHMathSciNetGoogle Scholar
  2. 2.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ–tree algorithms. Journal of Computer and Systems Sciences 13, 335–379 (1976)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Boyer, J., Myrvold, W.: Stop minding your P’s and Q’s: A simplified O(n) planar embedding algorithm. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 140–146 (1999)Google Scholar
  4. 4.
    Boyer, J., Myrvold, W.: On the cutting edge: Simplified O(n) planarity by edge addition. Accepted to Journal of Graph Algorithms and Applications, 1–29 (August 2004) Preprint at http://www.pacificcoast.net/~lightning/planarity.ps
  5. 5.
    Shih, W.K., Hsu, W.L.: A new planarity test. Theoretical Computer Science 223, 179–191 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hsu, W.L.: A simple test for the consecutive ones property. Journal of Algorithms 42, 1–16 (2002)CrossRefGoogle Scholar
  7. 7.
    Hsu, W.L., McConnell, R.: PC-trees and circular-ones arrangements. Theoretical Computer Science 296, 59–74 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hsu, W.-L.: PC-trees vs. PQ-trees. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 207–217. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Hsu, W.L., McConnell, R.: PC-trees. In: Mehta, D.P., Sahni, S, (eds.) submitted to Handbook of Data Structures and Applications (2004)Google Scholar
  10. 10.
    Hsu, W.L.: An efficient implementation of the PC-trees algorithm of shih and hsu’s planarity test. Technical Report TR-IIS-03-015, Institute of Information Science, Academia Sinica (2003)Google Scholar
  11. 11.
    Boyer, J.M., Cortese, P.F., Patrignani, M., Di Battista, G.: Stop minding your P’s and Q’s: Implementing a fast and simple DFS-based planarity testing and embedding algorithm. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    de Fraysseix, H., Rosenstiehl, P.: A characterization of planar graphs by trémaux orders. Combinatorica 5, 127–135 (1985)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John M. Boyer
    • 1
  1. 1.PureEdge Solutions Inc.VictoriaCanada

Personalised recommendations