Skip to main content

Computational Universality in Symbolic Dynamical Systems

  • Conference paper
Machines, Computations, and Universality (MCU 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3354))

Included in the following conference series:

Abstract

Many different definitions of computational universality for various types of systems have flourished since Turing’s work. In this paper, we propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. For Turing machines and tag systems, our definition coincides with the usual notion of universality. It however yields a new definition for cellular automata and subshifts. Our definition is robust with respect to noise on the initial condition, which is a desirable feature for physical realizability.

We derive necessary conditions for universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have an infinite number of subsystems. We also discuss the thesis that computation should occur at the ‘edge of chaos’ and we exhibit a universal chaotic system.

This paper presents research results of the Belgian Programme on Interuniversity Attraction Poles, initiated by the Belgian Federal Science Policy Office. The scientific responsibility rests with its author(s). J.-C. D. holds a FNRS fellowship (Belgian Fund for Scientific Research). A extended version of this paper, including proofs, is available on http://www.arxiv.org/abs/cs.CC/0404021

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siegelmann, H.: Neural Networks and Analog Computation: Beyond the Turing Limit. Progress in Theoretical Computer Science. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)

    Google Scholar 

  3. Moore, C.: Unpredictability and undecidability in dynamical systems. Physical Review Letters 64, 2354–2357 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Siegelmann, H., Fishman, S.: Analog computation with dynamical systems. Physica D 120, 214–235 (1998)

    Article  MATH  Google Scholar 

  5. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid systems. Theoretical Computer Science 168, 417–459 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In: Proceedings of the 6th IEEE Symposium on Logic in Computer Science (LICS 2001), Boston, USA. IEEE, Los Alamitos (2001)

    Google Scholar 

  7. Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog computations. Neural Computation 10, 1071–1095 (1998)

    Article  Google Scholar 

  8. Gacs, P.: Reliable cellular automata with self-organization. In: IEEE Symposium on Foundations of Computer Science, pp. 90–99 (1997)

    Google Scholar 

  9. Orponen, P.: A survey of continuous-time computation theory. In: Du, D.Z., Ko, K.I. (eds.) Advances in Algorithms, Languages, and Complexity, pp. 209–224. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  10. Moore, C.: Finite-dimensional analog computers: Flows, maps, and recurrent neural networks. In: Calude, C., Casti, J., Dinneen, M. (eds.) Unconventional Models of Computation. Springer, Heidelberg (1998)

    Google Scholar 

  11. Moore, C.: Dynamical recognizers: real-time language recognition by analog computers. Theoretical Computer Science 201, 99–136 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mitchell, M., Hraber, P., Crutchfield, J.: Dynamic computation, and the “edge of chaos”: A re-examination. In: Cowan, G., Pines, D., Melzner, D. (eds.) Complexity: Metaphors, Models, and Reality. Santa Fe Institute Proceedings, vol. 19, pp. 497–513. Addison-Wesley, Reading (1994) Santa Fe Institute Working Paper 93-06-040

    Google Scholar 

  13. Crutchfield, J., Young, K.: Computation at the onset of chaos. In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information, pp. 223–269. Addison-Wesley, Reading (1989)

    Google Scholar 

  14. Langton, C.: Computation at the edge of chaos. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  15. Moore, C.: Generalized shifts: Unpredictability and undecidability in dynamical systems. Nonlinearity 4, 199–230 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  17. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Davis, M.: A note on universal Turing machines. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 167–175. Princeton University Press, Princeton (1956)

    Google Scholar 

  19. Conway, J.: Unpredictable iterations. In: Proceedings of the 1972 Number Theory Conference, Boulder, Colorado, pp. 49–52 (1972)

    Google Scholar 

  20. Durand, B., Róka, Z.: he game of life: universality revisited. In: Delorme, M., Mazoyer, J. (eds.) Cellular Automata: a Parallel Model. Mathematics and its Applications, vol. 460, pp. 51–74. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  21. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory & Dynamical Systems 17, 417–433 (1997)

    Article  MATH  Google Scholar 

  22. Kůrka, P.: On topological dynamics of Turing machines. Theoretical Computer Science 174, 203–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Devaney, R.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  24. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. American Mathematics Monthly 99, 332–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delvenne, JC., Kůrka, P., Blondel, V.D. (2005). Computational Universality in Symbolic Dynamical Systems. In: Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2004. Lecture Notes in Computer Science, vol 3354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31834-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31834-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25261-0

  • Online ISBN: 978-3-540-31834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics