A Graph Theoretic Approach to Melodic Similarity

  • Goffredo Haus
  • Alberto Pinto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3310)


Common music information retrieval methods are based upon editing distances, reductionism or functional analysis tecniques. We adopt an approach which looks into a thematic fragment (TF) globally. This leads to associate a musical graph to each TF which preserves its more abstract content. Then, necessary conditions for graph inclusion are introduced and we give a similarity function between graphs which allows to assign different weights to the elements belonging to different graph powers. The advantage is that graphs catch more musical transformations than other methods, like permutations of subfragments.


melodic similarity musical graph graph metric similarity function eulerianity hamiltonicity inclusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tenney, J., Polansky, L.: Temporal gestalt perception of music: a metric space model. Journal of Music Theory 24, 205–241 (1980)CrossRefGoogle Scholar
  2. 2.
    Polansky, L.: Morphological metrics. Journal of New Music Research 25, 289–368 (1996)CrossRefGoogle Scholar
  3. 3.
    Polansky, L.: More on morphological mutation functions: Recent techniques and developements. In: Proceedings of the International Computer Music Conference, pp. 50–60 (1992)Google Scholar
  4. 4.
    Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Selfridge-Field, E.: Melodic Similarity. MIT Press, Cambridge (2000)Google Scholar
  6. 6.
    Pinto, A.: Modelli formali per misure di similarità musicale. Tesi di Laurea in Matematica, Università degli Studi di Milano, a.a. (2002-2003)Google Scholar
  7. 7.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)Google Scholar
  8. 8.
    Bollobàs, B.: Modern Graph Theory. Springer, Heidelberg (1998)MATHGoogle Scholar
  9. 9.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, Heidelberg (2001)MATHGoogle Scholar
  10. 10.
    Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Reading (1990)MATHGoogle Scholar
  11. 11.
    Martissa, E.: Analisi e sintesi di processi pseudo-musicali. Tesi di Laurea in Fisica, Università degli Studi di Milano, a.a. (1976-1977)Google Scholar
  12. 12.
    Verdi, L.: Organizzazione delle altezze nello spazio temperato. Ensemble ’900 (1998)Google Scholar
  13. 13.
    Schönberg, A.: Harmonielehre. Leipzig-Wien (1911)Google Scholar
  14. 14.
    Baroni, M., Dalmonte, R., Jacobini, C.: Le regole della musica. EDT (1999)Google Scholar
  15. 15.
    Haus, G.: Elementi di informatica musicale. Jackson (1984)Google Scholar
  16. 16.
    Roads, C.: The computer music tutorial. MIT Press, Cambridge (1996)Google Scholar
  17. 17.
    Farina, G.: Manuale di armonia. Carish (1946)Google Scholar
  18. 18.
    Bach, J.S.: Die Kunst der Fuge. In: Peters (ed.) BWV 1080 (1967)Google Scholar
  19. 19.
    Bach, J.S.: Einige canonische Veränderungen über das Weinachtslied: ’Vom Himmel hoch, da komm’ich her’. In: Peters (ed.) BWV 769 (1967)Google Scholar
  20. 20.
    Bach, J.S.: Orgelwerke. ed.Peters (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Goffredo Haus
    • 1
  • Alberto Pinto
    • 1
  1. 1.LIM – Laboratorio di Informatica Musicale, DICO – Dipartimento di Informatica e ComunicazioneUniversità degli Studi di Milano 

Personalised recommendations