The Clarinet Timbre as an Attribute of Expressiveness

  • Philippe Guillemain
  • Robin T. Helland
  • Richard Kronland-Martinet
  • Sølvi Ystad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3310)

Abstract

In this paper we analyze clarinet sounds produced by a synthesis model that simulates the physical behavior of a real clarinet, in order to find a relationship between the clarinet timbre and the interpretation. Sounds have been obtained by varying two important control parameters of the synthesis model, namely the blowing pressure and the aperture of the reed channel. These parameters are also used to control real reed instruments. Four different timbre descriptors have further been applied to the sounds in order to investigate the timbre evolution as a function of these control parameters. The validity of the synthesis model has been verified thanks to an experimental setup with an artificial mouth, making it possible to generate and record sounds from a real clarinet while controlling the pressure and aperture of the reed channel. A relationship between the timbre and the physical behavior of the instrument has been found thanks to the physical synthesis model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. Psychol. Res. 58, 177–192 (1995)CrossRefGoogle Scholar
  2. McAdams, S.: Recognition of sound sources and events. In: McAdams, S., Bigand, E. (eds.) Thinking in Sound: The Cognitive Psychology of Human Audition, pp. 146–198. Oxford Univ. Press, Oxford (1993)Google Scholar
  3. Beauchamp, J.: Synthesis by spectral amplitude and ”Brightness” matching of analyzed musical instrument tones. J. Acoust. Eng. Soc. 30(6), 396–406 (1982)Google Scholar
  4. Grey, J.M.: Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc. Am 61, 1270–1277 (1977)CrossRefGoogle Scholar
  5. Guillemain, P., Kergomard, J., Voinier, T.: Procèdè de simulation et de synthèse numèrique d’un phènomène oscillant, October 2002. french patent request n0213682 (2002)Google Scholar
  6. Guillemain, P., Voinier, T.: Characterization of musical performance using Physical Sound Synthesis Models. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 64–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. Jensen, K.: Timbre models of musical sounds, Ph. D. DIKU press, Copenhagen (1999)Google Scholar
  8. Kergomard, J.: Elementary considerations on reed-instruments oscillations. In: Mechanics of Musical Instruments. Lectures notes CISM. Springer, Heidelberg (1995)Google Scholar
  9. Menon, V., Levitin, D.J., Smith, B.K., Lembke, A., Krasnow, B.D., Glazer, D., Glover, G.H., McAdams, S.: Neural Correlates of Timbre Change in Harmonic Sounds NeuroImage, vol. 17, pp. 1742–1754 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Philippe Guillemain
    • 1
  • Robin T. Helland
    • 1
  • Richard Kronland-Martinet
    • 1
  • Sølvi Ystad
    • 1
  1. 1.CNRS-Laboratoire de Mécanique et d’AcoustiqueMarseille cedex 20France

Personalised recommendations