Perceptive and Cognitive Evaluation of a Piano Synthesis Model

  • Julien Bensa
  • Danièle Dubois
  • Richard Kronland-Martinet
  • Sølvi Ystad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3310)


The aim of this work is to use subjective evaluations of sounds produced by a piano synthesis model to determine the perceptual influence on phenomena involved in sound production. The specificity of musical sounds is that they are intended for perception and judgments by human beings. It is therefore necessary, in order to evaluate the acoustic qualities of a musical instrument or a sound model, to introduce a research approach which takes into account the evaluation of the sound quality by human beings. As a first approach we synthesize a number of piano sounds. We then evaluate the quality of the perceived acoustic signal by questioning a group of persons. We hereby try to link the model’s parameters to semantic descriptors obtained from these persons and to more classical perceptual signal descriptors. This approach should give a better understanding of how the model’s parameters are linked to cognitive representations and more generally give new clues to cognitive descriptions of timbre of musical sounds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosch, E.: Principles of categorization. In: Lloyd, B.B., Erlbaum, L. (eds.) Cognition and categorization, Hillsdale, pp. 27–47 (1978)Google Scholar
  2. 2.
    Dubois, D. (ed.): Sèmantique et Cognition. Editions du CNRS, Paris (1991)Google Scholar
  3. 3.
    Dubois, D. (ed.): Catègorisation et cognition: de la perception au discours. Kimè, Paris (1997)Google Scholar
  4. 4.
    Guyot, F.: Etude de la perception sonore en termes de reconnaissance et d’appréciation qualitative: une approche par la catégorisation. Thése de doctorat, Université du Maine, Le Mans (1996)Google Scholar
  5. 5.
    Maffiolo, V.: De la caractérisation sémantique et acoustique de la qualité sonore de l’environnement sonore urbain. Thése de doctorat, Université du Maine, Le Mans (1999)Google Scholar
  6. 6.
    Gaillard, P.: Etude de la perception des transitoires d’attaque des sons de steeldrums: particularités acoustiques, transformation par synth‘ese et catégorisation. Thèse de doctorat, Universitè de Toulouse II, Toulouse (2000)Google Scholar
  7. 7.
    Jensen, K.: Timbre models of musical sounds. Ph.D. thesis. DIKU press, Copenhagen Denmark (1999)Google Scholar
  8. 8.
    Askenfelt, A. (ed.): Five Lectures on the Acoustics of the Piano. Royal Swedish Academy of Music, Stockholm (1990)Google Scholar
  9. 9.
    Chaigne, A., Askenfelt, A.: Numerical simulations of struck strings. I. A physical model for a struck string using finite difference methods. J. Acoust. Soc. Amer. 95(2), 1112–1118 (1994)CrossRefGoogle Scholar
  10. 10.
    Smith III, J.O., Van Duyne, S.A.: Commuted piano synthesis. In: Proc. Int. Computer Music Conf., Banff (1995)Google Scholar
  11. 11.
    Avanzini, F., Bank, B., Borin, G., De Poli, G., Rocchesso, D.: Musical instrument modeling: the case of the piano. In: Proc. of the worshop on current research directions in computer music. MOSART Research training network (2001)Google Scholar
  12. 12.
    Bank, B.: Physics-based sound synthesis of the piano. Master thesis, Budapest University of Technology and Economics, Hungary (2000); Published as Report 54 of HUT Laboratory of Acoustics and Audio Signal Processing,
  13. 13.
    Bensa, J.: Analysis and synthesis of piano sounds using physical and signal models. Ph.D. thesis, Universitè de la mèditerranèe (2003),
  14. 14.
    Smith, J.O.: Digital Waveguide Modeling of Musical Instruments. Available online at,
  15. 15.
    Bensa, J., Daudet, L.: Efficient modeling of “phantom” partials in piano tones. In: Proc. of the International Symposium on Musical Acoustics, Nara, Japan (2004)Google Scholar
  16. 16.
    Fletcher, H., Blackham, E.D., Stratton, S.: Quality of Piano Tones. J. Acoust. Soc. Amer. 34(6), 749–761 (1961)CrossRefGoogle Scholar
  17. 17.
    Young, R.W.: Inharmonicity of plain wire piano strings. J. Acoust. Soc. Amer. 21, 267–273 (1952)CrossRefGoogle Scholar
  18. 18.
    Conklin Jr., H.A.: Generation of partials due to non-linear mixing in stringed instrument. J. Acoust. Soc. Amer. 105(1), 536–545 (1999)CrossRefGoogle Scholar
  19. 19.
    Valette, C., Cuesta, C.: Mècanique de la corde vibrante. Traitè des nouvelles technologies. Sèrie Mècanique, ed. Hermès (1993)Google Scholar
  20. 20.
    Bank, B., Sujbert, L.: Modeling the longitudinal vibration of piano strings. In: Proc. Stockholm Music Acoustics Conf. (2003)Google Scholar
  21. 21.
    Aramaki, M., et al.: Resynthesis of coupled piano strings vibrations based on physical modeling. J. of New Music Research 30(3), 213–226 (2001)CrossRefGoogle Scholar
  22. 22.
    McAdams, S.: Recognition of sound sources and events. In: McAdams, S., Bigand, E. (eds.) Thinking in Sound: The Cognitive Psychology of Human Audition, pp. 146–198. Oxford Univ. Press, Oxford (1993)Google Scholar
  23. 23.
    Menon, V., Levitin, D.J., Smith, B.K., Lembke, A., Krasnow, B.D., Glazer, D., Glover, G.H., McAdams, S.: Neural Correlates of Timbre Change. Harmonic Sounds NeuroI-mage 17, 1742–1754 (2002)Google Scholar
  24. 24.
    Beauchamp, J.: Synthesis by spectral amplitude and “Brightness” matching of analyzed musical instrument tones. J. of the Audio Engenering Society 30(6), 396–406 (1982)Google Scholar
  25. 25.
    McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: Common dimensions, specificties, and latent subject classes. Psychol. Res. 58, 177–192 (1995)CrossRefGoogle Scholar
  26. 26.
    Grey, J.M.: Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc. Am. 61, 1270–1277 (1977)CrossRefGoogle Scholar
  27. 27.
    Dubois, D.: Categories as acts of meaning: the case of categories in olfaction and audition. Cognitive Science Quarterly 1, 35–68 (2000)Google Scholar
  28. 28.
    Castellengo, M.: Perception auditive des sons musicaux. In: Zenatti, A. (ed.) Psychologie de la musique. pp. 55–86 PUF Paris (1994)Google Scholar
  29. 29.
    Dubois, D., Resche-Rigon, P., Tenin, A.: Des couleurs et des formes: catègories perceptives ou constructions cognitives. In: Dubois, D. (ed.) Catègorisation et cognition: de la perception au discours. pp. 7–40 Kim, Paris (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Julien Bensa
    • 1
  • Danièle Dubois
    • 1
  • Richard Kronland-Martinet
    • 2
  • Sølvi Ystad
    • 2
  1. 1.Laboratoire d’Acoustique MusicaleUniversité Pierre et Marie CurieParisFrance
  2. 2.Laboratoire de Mécanique et d’Acoustique équipeMarseilleFrance

Personalised recommendations