Aspects of the Topology of Interactions on Loop Dynamics in One and Two Dimensions

  • Georg Essl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3310)

Abstract

This paper discusses aspects of topology as relevant for loop dynamics as they occur in physical modeling synthesis algorithms. Boundary and interaction point behavior is treated purely from a topological perspective for some dynamical systems in one and two dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, J.O.: Acoustic modeling using digital waveguides. In: Roads, C., Pope, S.T., Piccialli, A., De Poli, G. (eds.) Musical Signal Processing. Swets, Lisse, Netherlands, pp. 221–263 (1997)Google Scholar
  2. 2.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  3. 3.
    Jänich, K.: Topologie, 7th edn. Springer, Berlin (2001)MATHGoogle Scholar
  4. 4.
    Tabachnikov, S.: Billiards. Soc. Math. de France, Paris (1995)Google Scholar
  5. 5.
    Brack, M., Bhaduri, R.K.: Semiclassical Physics, vol. 96. Addison-Wesley Publishing, Reading (1997)Google Scholar
  6. 6.
    Keller, J.B., Rubinow, S.I.: Asymptotic Solution of Eigenvalue Problems. Annals of Physics 9, 24–75 (1960)MATHCrossRefGoogle Scholar
  7. 7.
    Essl, G., Serafin, S., Cook, P.R., Smith, J.O.: Theory of Banded Waveguides. Computer Music Journal 28, 37–50 (2004)CrossRefGoogle Scholar
  8. 8.
    Bar-Natan, D.: On the Vassiliev Knot Invariants. Topology 34, 423–472 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Essl, G.: Velocity Excitations and Impulse Responses of Strings – Aspects of Continuous and Discrete Models. ArXiv preprint physics/0401065 (2004), http://arxiv.org/abs/physics/0401065
  10. 10.
    Rayleigh, J.W.S.: The Theory of Sound, vol. II. Dover, New York (1945)MATHGoogle Scholar
  11. 11.
    Essl, G.: Trapping and Steering on Lattice Strings: Virtual SlowWaves, Directional and Non-propagating Excitations. Physical Review E 69 (066601–1–6) (2004)Google Scholar
  12. 12.
    Essl, G.: Physical Wave Propagation Modeling for Real-Time Synthesis of Natural Sounds. PhD thesis, Princeton University, Princeton, NJ (2002) Available also as Princeton University Computer Science Technical Report TR-659-02 at, http://ncstrl.cs.princeton.edu/expand.php?id=TR-659-02

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Georg Essl
    • 1
  1. 1.Media Lab EuropeSugar House LaneDublin 8Ireland

Personalised recommendations