Comparing Pitch Spelling Algorithms on a Large Corpus of Tonal Music

  • David Meredith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3310)

Abstract

This paper focuses on the problem of constructing a reliable pitch spelling algorithm—that is, an algorithm that computes the correct pitch names (e.g., C\(\sharp\)4, B\(\flat\)5 etc.) of the notes in a passage of tonal music, when given only the onset-time, MIDI note number and possibly the duration of each note. The author’s ps13 algorithm and the pitch spelling algorithms of Cambouropoulos, Temperley and Longuet-Higgins were run on a corpus of tonal music containing 1.73 million notes. ps13 spelt significantly more of the notes in this corpus correctly than the other algorithms (99.33% correct). However, Temperley’s algorithm spelt significantly more intervals between consecutive notes correctly than the other algorithms (99.45% correct). All the algorithms performed less well on classical music than baroque music. However, ps13 performed more consistently across the various composers and styles than the other algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davy, M., Godsill, S.J.: Bayesian harmonic models for musical signal analysis (with discussion). In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. VII, Oxford University Press, Oxford, Draft available online at http://www-sigproc.eng.cam.ac.uk/~sjg/papers/02/harmonicfinal2.ps
  2. 2.
    Walmsley, P.J.: Signal Separation of Musical Instruments. PhD thesis, Signal Processing Group, Department of Engineering, University of Cambridge (2000)Google Scholar
  3. 3.
    Plumbley, M., Abdallah, S., Bello, J., Davies, M.E., Monti, G., Sandler, M.: Automatic music transcription and audio source separation. Cybernetics and Systems 33, 603–627 (2002)CrossRefGoogle Scholar
  4. 4.
    Meredith, D., Lemström, K., Wiggins, G.A.: Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research 31, 321–345 (2002), Draft available online at http://www.titanmusic.com/papers/public/siajnmrsubmit2.pdf Google Scholar
  5. 5.
    Piston, W.: Harmony. Victor Gollancz Ltd, London (1978), Revised and expanded by Mark DeVotoGoogle Scholar
  6. 6.
    Cambouropoulos, E.: A general pitch interval representation: Theory and applications. Journal of New Music Research 25, 231–251 (1996)CrossRefGoogle Scholar
  7. 7.
    Cambouropoulos, E.: Towards a General Computational Theory of Musical Structure. PhD thesis, University of Edinburgh (1998), Available online at http://users.auth.gr/~emilios/englishpage/phd.html
  8. 8.
    Cambouropoulos, E.: Automatic pitch spelling: From numbers to sharps and flats. In: VIII Brazilian Symposium on Computer Music (SBC&M 2001), Fortaleza, Brazil (2001), Available online at ftp://ftp.ai.univie.ac.at/papers/oefai-tr-2001-12.pdf
  9. 9.
    Cambouropoulos, E.: Pitch spelling: A computational model. Music Perception 20, 411–429 (2003)CrossRefGoogle Scholar
  10. 10.
    Longuet-Higgins, H.C.: The perception of melodies. Nature 263, 646–653 (1976)CrossRefGoogle Scholar
  11. 11.
    Longuet-Higgins, H.C.: The perception of melodies. In: Longuet-Higgins, H.C. (ed.) Mental Processes: Studies in Cognitive Science, pp. 105–129. British Psychological Society/ MIT Press, London (1987)Google Scholar
  12. 12.
    Longuet-Higgins, H.C.: The perception of melodies. In: Schwanauer, S.M., Levitt, D.A. (eds.) Machine Models of Music, pp. 471–495. MIT Press, Cambridge (1993)Google Scholar
  13. 13.
    Temperley, D.: An algorithm for harmonic analysis. Music Perception 15, 31–68 (1997)Google Scholar
  14. 14.
    Temperley, D.: The Cognition of Basic Musical Structures. MIT Press, Cambridge (2001)Google Scholar
  15. 15.
    Meredith, D.: Pitch spelling algorithms. In: Kopiez, R., Lehmann, A.C., Wolther, I., Wolf, C. (eds.) Proceedings of the Fifth Triennial ESCOM Conference (ESCOM5), Hanover University of Music and Drama, Hanover, Germany, September 8-13, pp. 204–207 (2003), Draft available online at, http://www.titanmusic.com/papers/public/ps13-escom-paper.pdf
  16. 16.
    Hewlett, W.B.: MuseData: Multipurpose representation. In: Selfridge-Field, E. (ed.) Beyond MIDI: The Handbook of Musical Codes, pp. 402–447. MIT Press, Cambridge (1997)Google Scholar
  17. 17.
    Regener, E.: Pitch Notation and Equal Temperament: A Formal Study. University of California Press, Berkeley (1973)Google Scholar
  18. 18.
    Meredith, D.: Method of computing the pitch names of notes in MIDIlike music representations, Patent filing submitted to UK Patent Office on, April 11 (2003). Application number 0308456.3. Draft available online at, http://www.titanmusic.com/papers/public/ps13-patent-1.pdf
  19. 19.
    Meredith, D.: Method of computing the pitch names of notes in MIDI-like music representations, Patent filing submitted to UK Patent Office on 18, Application number 0406166.9. Priority date 11, Draft available online (March 2004), at http://www.titanmusic.com/papers/public/ps13-patent-2.pdf
  20. 20.
    Meredith, D.: Method of computing the pitch names of notes in MIDI-like music representations (2004). Patent filing submitted to US Patent Office on April 12. Application number 10/821962. Priority date April 11 (2003). Draft available online at http://www.titanmusic.com/papers/public/us-ps13-patent.pdf.
  21. 21.
    Associated Board of the Royal Schools of Music: Rudiments and Theory of Music. Associated Board of the Royal Schools of Music, 14 Bedford Square, London, WC1B 3JG (1958)Google Scholar
  22. 22.
    Krumhansl, C.L.: Cognitive Foundations of Musical Pitch, vol. 17. Oxford University Press, New York (1990)Google Scholar
  23. 23.
    Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organisation in a spatial representation of musical keys. Psychological Review 89, 334–368 (1982)CrossRefGoogle Scholar
  24. 24.
    McNemar, Q.: Psychological Statistics, 4th edn. John Wiley and Sons, New York (1969)Google Scholar
  25. 25.
    Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1924 (1998)CrossRefGoogle Scholar
  26. 26.
    Chew, E., Chen, Y.C.: Determining context-defining windows: Pitch spelling using the spiral array. In: Fourth International Conference on Music Information Retrieval, ISMIR 2003, Baltimore, MD (2003), Available online http://www-rcf.usc.edu/~echew/papers/ISMIR4/ecyc-ismir4.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Meredith
    • 1
  1. 1.Centre for Computational CreativityCity University, LondonLondonUnited Kingdom

Personalised recommendations