Towards a Formal Treatment of Secrecy Against Computational Adversaries

  • Angelo Troina
  • Alessandro Aldini
  • Roberto Gorrieri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3267)


Polynomial time adversaries based on a computational view of cryptography have additional capabilities that the classical Dolev-Yao adversary model does not include. To relate these two different models of cryptography, in this paper we enrich a formal model for cryptographic expressions, originally based on the Dolev-Yao assumptions, with computational aspects based on notions of probability and computational power. The obtained result is that if the cryptosystem is robust enough, then the two adversary models turn out to be equivalent. As an application of our approach, we show how to determine a secrecy property against the computational adversary.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus. Information and Computation 148(1), 1–70 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abadi, M., Rogaway, P.: Reconciling Two Views of Cryptography. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Aldini, A., Bravetti, M., Di Pierro, A., Gorrieri, R., Hankin, C., Wiklicky, H.: Two Formal Approaches for Approximating Noninterference Properties. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2001. LNCS, vol. 2946, pp. 1–43. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Aldini, A., Bravetti, M., Gorrieri, R.: A Process-algebraic Approach for the Analysis of Probabilistic Non-interference. Journal of Computer Security 12(2), 191–245 (2004)CrossRefGoogle Scholar
  5. 5.
    Backes, M., Pfitzmann, B.: Computational Probabilistic Non-interference. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. M. Backes, B. Pfitzmann, vol. 2502, pp. 1–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Datta, A., Kusters, R., Mitchell, J.C., Ramanathan, A., Shmatikov, V.: Unifying Equivalence-Based Definitions of Protocol Security. In: Proc. of Workshop on Issues in the Theory of Security, WITS 2004 (2004)Google Scholar
  7. 7.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate Non-Interference. In: Proc. of 15th Computer Security Foundations Workshop, pp. 1–17. IEEE CS Press, Los Alamitos (2002)Google Scholar
  8. 8.
    Dolev, D., Yao, A.: On the Security of Public-key Protocols. IEEE Transactions on Information Theory 29, 198–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Durante, A., Focardi, R., Gorrieri, R.: A Compiler for Analysing Cryptographic Protocols Using Non-Interference. ACM Transactions on Software Engineering and Methodology (TOSEM) 9(4), 489–530 (2000)CrossRefGoogle Scholar
  10. 10.
    Gray III, J.W.: Toward a Mathematical Foundation for Information Flow Security. Journal of Computer Security 1, 255–294 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Herzog, J.: A Computational Interpretation of Dolev-Yao Adversaries. In: Proc. of 3rd Int. Workshop on Issues in the Theory of Security (WITS 2003) (2003)Google Scholar
  12. 12.
    Kemmerer, R.A.: Analyzing Encryption Protocols using Formal Verification Techniques. IEEE Journal on Selected Areas in Communications 7(4), 448–457 (1989)CrossRefGoogle Scholar
  13. 13.
    Laud, P.: Semantics and Program Analysis of Computationally Secure Information Flow. In: Sands, D. (ed.) ESOP 2001 and ETAPS 2001. LNCS, vol. 2028, pp. 77–91. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Lincoln, P., Mitchell, J.C., Mitchell, M., Scedrov, A.: A Probabilistic Poly-Time Framework for Protocol Analysis. In: Proc. of 5th ACM Conf. on Computer and Communications Security, pp. 112–121. ACM Press, New York (1998)Google Scholar
  15. 15.
    Micciancio, D., Warinschi, B.: Completeness Theorems for the Abadi-Rogaway Language of Encrypted Expressions. In: 2nd ACM SIGPLAN and IFIP WG 1. 7 Workshop on Issues in the Theory of Security (WITS 2002), Portland (OR) (2002)Google Scholar
  16. 16.
    Millen, J.K., Clark, S.C., Freedman, S.B.: The Interrogator: Protocol Security Analysis. IEEE Transactions on Software Engineering SE-13(2), 274–288 (1987)CrossRefGoogle Scholar
  17. 17.
    Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Protocols. Journal of Computer Security 6(1-2), 85–128 (1998)CrossRefGoogle Scholar
  18. 18.
    Ramanathan, A., Mitchell, J., Scedrov, A., Teague, V.: Probabilistic Bisimulation and Equivalence for Security Analysis of Network Protocols. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 468–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Schneider, S.: Security Properties and CSP. In: IEEE Symposium on Security and Privacy, pp. 174–187. IEEE CS Press, Los Alamitos (1996)Google Scholar
  20. 20.
    Troina, A., Aldini, A., Gorrieri, R.: A Probabilistic Formulation of Imperfect Cryptography. In: Proc. of 1st Int. Workshop on Issues in Security and Petri Nets, WISP 2003 (2003)Google Scholar
  21. 21.
    Troina, A., Aldini, A., Gorrieri, R.: Approximating Imperfect Cryptography in a Formal Model. In: Proc. of Mefisto Project Final Workshop. ENTCS. Elsevier, Amsterdam (to appear), available at:
  22. 22.
    Degano, P., Zunino, R.: A Note on the Perfect Encryption Assumption in a Process Calculus. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 514–528. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Angelo Troina
    • 1
  • Alessandro Aldini
    • 2
  • Roberto Gorrieri
    • 3
  1. 1.Dipartimento di InformaticaUniversity of PisaPisaItaly
  2. 2.Istituto STIUniversity of UrbinoUrbinoItaly
  3. 3.Dipartimento di Scienze dell’InformazioneUniversity of BolognaBolognaItaly

Personalised recommendations