8 Gravitational Wave Astronomy:The High Frequency Window

  • Nils Andersson
  • Kostas D. Kokkotas
Part III In Search of the Imprints of Early Universe: Gravitational Waves
Part of the Lecture Notes in Physics book series (LNP, volume 653)


As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars.

This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated “bread-and-butter” source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.


Black Hole Neutron Star Gravitational Wave Quasinormal Mode Gravitational Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. C. Cutler, K.S. Thorne, in proceedings of GR16 (Durban South Africa, 2001), gr-qc/0204090.Google Scholar
  2. 2. R. Schnabel, J. Harms, K.A Strain, K. Danzmann, Class. Quantum Grav. 21, S1155 (2004).Google Scholar
  3. 3. M. Bonaldi, M. Cerdonio, L. Conti, G.A. Prodi, L. Taffarello, J.P. Zendri, Class. Quantum Grav. 21, S1155 (2004).Google Scholar
  4. 4. M. Burgay, N. D’Amico, A. Possenti, R.N. Manchester, A.G. Lyne, B.C. Joshi, M.A. McLaughlin, M. Kramer, J.M. Sarkissian, F. Camilo, V. Kalogera, C. Kim, D.R. Lorimer, Nature, 426, 531 (2003).Google Scholar
  5. 5. V. Kalogera, C. Kim, D.R. Lorimer, M. Burgay, N. D’Amico, A. Possenti, R.N. Manchester, A.G. Lyne, B.C. Joshi, M.A. McLaughlin, M. Kramer, J.M. Sarkissian, F. Camilo, Astrophys.J. 601, L179 (2004).Google Scholar
  6. 6. E. Cappellaro, M. Turatto, D.Yu. Tsvetov, O.S. Bartunov, C. Pollas, R. Evans and M. Hamuy, A&A 351, 459 (1999).Google Scholar
  7. 7. O. Zanotti, L. Rezzolla, J. A. Font, M.N.R.A.S., 341 832 (2003).Google Scholar
  8. 8. C.L. Fryer, S.E. Woosley, A. Heger, Astrophys. J. 550, 372 (2001).Google Scholar
  9. 9. C.L. Fryer, V. Kalogera, Astrophys. J. 554, 548 (2001).Google Scholar
  10. 10. C.L. Fryer, A. Heger, Astrophys. J. 541 1033 (2000).Google Scholar
  11. 11. H. Dimmelmeier, J.A. Font, E. Muller, A& A 393, 523 (2002).Google Scholar
  12. 12. S.L. Finn, C.R. Evans, Astrophys. J, 351, 588 (1990).Google Scholar
  13. 13. T. Zwerger, E. Müller, A & A 320, 209 (1997).Google Scholar
  14. 14. M. Rampp, E. Müller, M. Ruffert, A& A 332, 969 (1998).Google Scholar
  15. 15. C.L. Fryer, D.E. Holz, S.A. Hudges, Astrophys. J. 565, 430 (2002).Google Scholar
  16. 16. C.D. Ott, A. Burrows, E. Livne, R. Walder, Astrophys. J. 600, 834 (2004).Google Scholar
  17. 17. K. Kotake, S. Yamada, K. Sato K, Phys. Rev. D 68, 044023 (2003).Google Scholar
  18. 18. M. Shibata, Astrophys. J. 595, 992 (2003).Google Scholar
  19. 19. L. Baiotti, I. Hawke, P. . Montero, F. Löffler, L. Rezzolla, N. Stergioulas, J. A. Font, E. Seidel, gr-qc/0403029.Google Scholar
  20. 20. P.A. Caraveo, Astrophys. J. 415, L111 (1993).Google Scholar
  21. 21. A. Burrows, J. Hayes, Phys. Rev. Lett. 76, 1037 (1996).Google Scholar
  22. 22. E. Müller, H.-Th. Janka, A& A 317, 140 (1997).Google Scholar
  23. 23. H. C. Spruit, E.S. Phinney, Nature 393, 139 (1998).Google Scholar
  24. 24. L. C. Loveridge, Phys. Rev. D 69,024008 (2004).Google Scholar
  25. 25. P. Hoeflich, A. Khokhlov, L. Wang, J. C. Wheeler, D. Baade, IAU Symposium 212 on Massive Stars, D. Reidel Conf. Series, ed. E. van den Hucht, astro-ph/0207272.Google Scholar
  26. 26. Y. T Liu, L. Lindblom, M.N.R.A.S. 324, 1063 (2001).Google Scholar
  27. 27. S. Kobayasi, P. Meszaros, Astrophys. J. 589,861 (2003).Google Scholar
  28. 28. M. Shibata, T. W. Baumgarte, S. L. Shapiro, Astrophys. J. 542, 453 (2000).Google Scholar
  29. 29. J. M. Centrella, K. C. B. New, L.L. Lowe, J.D. Brown, Astrophys. J. Lett. 550 193 (2001).Google Scholar
  30. 30. M. Shibata, S. Karino, Y. Eriguchi, M.N.R.A.S. 334, L27 (2002).Google Scholar
  31. 31. M. Shibata, S. Karino, Y. Eriguchi, M.N.R.A.S. 343, 619 (2003).Google Scholar
  32. 32. M. Saijo, T. W. Baumgarte, S. L. Shapiro, Astrophys. J. 595, 352 (2002).Google Scholar
  33. 33. K.D. Kokkotas, J. Ruoff, N. Andersson: gr-qc/0212419Google Scholar
  34. 34. S. Chandrasekhar, Phys. Rev. Lett. 24, 611 (1970).Google Scholar
  35. 35. J.L. Friedman, B.F. Schutz, Astroph. J. 222, 281 (1978).Google Scholar
  36. 36. N. Stergioulas, J.L. Friedman, Astrophys. J. 492, 301 (1998).Google Scholar
  37. 37. S. Yoshida, L. Rezzolla, S. Karino, Y. Eriguchi, Astrophys. J. Lett. 568, 41 (2002).Google Scholar
  38. 38. N. Stergioulas, Living Reviews in Relativity 6 3 (2003).Google Scholar
  39. 39. D. Lai, S.L. Shapiro, Astrophys. J. 442, 259 (1995).Google Scholar
  40. 40. L. Lindblom, B. J. Owen, S. M. Morsink, Phys. Rev. Lett., 80 4843 (1998).Google Scholar
  41. 41. B. Owen, L. Lindblom, C. Cutler, B.F. Schutz, A. Vecchio, N. Andersson, Phys. Rev. D 58, 084020 (1998).Google Scholar
  42. 42. N. Andersson, K. D. Kokkotas, B. F. Schutz, Astrophys. J. 510, 846 (1999).Google Scholar
  43. 43. L. Bildsten, G. Ushomirsky, Astrophys. J. 529, L33 (2000).Google Scholar
  44. 44. L. Lindblom, B. J. Owen, G. Ushomirsky, Phys. Rev. D 62, 084030 (2000).Google Scholar
  45. 45. A. K. Schenk, P. Arras, E.E. Flanagan, S.A. Teukolsky, I. Wasserman, Phys. Rev. D 65, 024001 (2002).Google Scholar
  46. 46. L. Rezzolla, F. K. Lamb, S. L. Shapiro, Astrophys. J. 531, L139 (2000).Google Scholar
  47. 47. L. Lindblom, B. Owen, Phys. Rev. D 65, 063006 (2002).Google Scholar
  48. 48. N. Andersson and K. D. Kokkotas, I.J.M.P. D10,381 (2001).Google Scholar
  49. 49. N. Andersson, Class. Quantum Grav., 20 R105 (2003).Google Scholar
  50. 50. N. Andersson, K. D. Kokkotas, N. Stergioulas, Astrophys. J. 307, 314 (1999).Google Scholar
  51. 51. N. Andersson, D.I. Jones, K.D. Kokkotas, N. Stergioulas, Astrophys. J. Lett. 534 L75 (2000).Google Scholar
  52. 52. J. Heyl, Astrophys. J. Lett. 574 L57 (2002).Google Scholar
  53. 53. R.V. Wagoner, Astrophys. J. Lett. 578 L63 (2002).Google Scholar
  54. 54. N. Andersson, D.I. Jones, K. D. Kokkotas, M.N.R.A.S. 337 1224 (2002).Google Scholar
  55. 55. A. Reisenegger, A. Bonacic, Phys. Rev. Lett. 91, 201103 (2003).Google Scholar
  56. 56. R.A. Araya-Góchez astro-ph/0311001Google Scholar
  57. 57. A. Nagar, G. Diaz, J. A. Pons, J. A. Font, gr-qc/0403077.Google Scholar
  58. 58. E. Echeverria, Phys. Rev. D 40 3194 (1988).Google Scholar
  59. 59. L.S. Finn, Phys. Rev. D 8 3308 (1992).Google Scholar
  60. 60. O. Dryer, B. Kelly, B. Krishnan, L. S. Finn, D. Garrison, R. Lopez-Aleman, Class. Quantum Grav. 21, 787 (2004).Google Scholar
  61. 61. M. Davis, R. Ruffini, W.H. Press, R.H. Price, Phys. Rev. Lett.27, 1466 (1971).Google Scholar
  62. 62. P. Anninos, R. H. Price, J. Pullin, E. Seidel, W.-M. Suen, Phys. Rev. D 52, 4462 (1995).Google Scholar
  63. 63. N. Andersson, K.D. Kokkotas, M.N.R.A.S. 299, 1059 (1998).Google Scholar
  64. 64. K.D. Kokkotas, T. Apostolatos, N. Andersson, M.N.R.A.S. 320 307 (2001).Google Scholar
  65. 65. N. Andersson, G.L. Comer, Phys. Rev. Lett.87, 241101 (2001).Google Scholar
  66. 66. M. Vallisneri, Phys. Rev. Lett. 84 3519 (2000).Google Scholar
  67. 67. J.A. Faber, P. Grandclement, F.A. Rasio, K. Taniguchi, Phys. Rev. Lett. 89 231102 (2002).Google Scholar
  68. 68. B. Allen in Les Houches School on Astrophysicsl Sources of Gravitational Waves, eds J.A. Marcka and J.P. Lasota, Cambridge University Press (1996).Google Scholar
  69. 69. M. Maggiore, Phys. Reports 331, 283 (2000).Google Scholar

Authors and Affiliations

  • Nils Andersson
    • 1
  • Kostas D. Kokkotas
    • 2
    • 3
  1. 1.School of Mathematics, University of Southampton, Southampton SO17 1BJUK
  2. 2.Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 541 24Greece
  3. 3.Center for Gravitational Wave Physics, 104 Davey Laboratory, University Park, PA 16802USA

Personalised recommendations