Advertisement

2 Cosmological Perturbation Theory

  • Ruth Durrer
Part I The Early Universe According to General Relativity: How Far We Can Go
Part of the Lecture Notes in Physics book series (LNP, volume 653)

Abstract

This is a review on cosmological perturbation theory. After an introduction, it presents the problem of gauge transformation. Gauge invariant variables are introduced and the Einstein and conservation equations are written in terms of these variables. Some examples, especially perfect fluids and scalar fields are presented in detail. The generation of perturbations during inflation is studied. Lightlike geodesics and their relevance for CMB anisotropies are briefly discussed. Perturbation theory in braneworlds is also introduced.

Keywords

Energy Momentum Tensor Scalar Perturbation Vector Perturbation Tensor Perturbation Radiation Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. I. Newton, Letters from Sir Isaac Newton to Dr. Bentley, Letter I, 203ff quoted by A. Koyré, From the Classical World to the Infinite Universe, Harper and Row (New York 1958).Google Scholar
  2. 2. E. Lifshitz, JETP 10, 116 (1946).Google Scholar
  3. 3. D. Barden and C. Thomas, An Introduction to Differential Manifolds, Imperial College Press (2003).Google Scholar
  4. 4. J.M. Stewart and M. Walker, Proc. R. Soc. London A341, 49 (1974).Google Scholar
  5. 5. J. Bardeen, Phys. Rev. D22, 1882 (1980).Google Scholar
  6. 6. H. Kodama and M. Sasaki Prog. Theor. Phys. Suppl 78, 1 (1984).Google Scholar
  7. 7. R. Durrer, Fund. of Cosmic Physics 15, 209 (1994).Google Scholar
  8. 8. M. Bruni, P. Dunsby and G. Ellis, Astrophys. J 395, 34 (1992).Google Scholar
  9. 9. R. Trotta, A. Riazuelo and R. Durrer, Phys. Rev. Lett. 87, 231301 (2001).Google Scholar
  10. 10. M. Bucher, K. Moodley and N. Turok, Phys. Rev. D 66, 023528 (2002)Google Scholar
  11. 11. E. Harrison, Phys. Rev. D1 2726 (1970); Ya. B. Zel’dovich, Mont. Not. R. Astr. Soc. 160, P1 (1972).Google Scholar
  12. 12. V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rept. 215, 203 (1992).Google Scholar
  13. 13. R. Durrer, M. Kunz and A. Melchiorri, Phys. Rept. 364, 1 (2002).Google Scholar
  14. 14. R.K. Sachs and A.M. Wolfe, Astrophys. J. 147, 73 (1967).Google Scholar
  15. 15. M. Tegmark et al., astro-ph/0310725, (2003).Google Scholar
  16. 16. P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press (1993).Google Scholar
  17. 17. G.F. Smoot et al., Astrophys. J. 396, L1 (1992).Google Scholar
  18. 18. U. Pen, D. Spergel and N. Turok, Phys Rev. D 49, 692 (1994).Google Scholar
  19. 19. R. Durrer and Z. Zhou, Phys. Rev. D 53, 5394 (1996).Google Scholar
  20. 20. B. Allen et al., Phys. Rev. Lett. 79, 2624 (1997).Google Scholar
  21. 21. R. Durrer et al., Phys. Rev. D 59, 043511 (1999)Google Scholar
  22. 22. T. Kanazawa, M. Kawasaki, N. Sugiyama, and T. Yanagida, Prog. Theor. Phys. 100 1055 (1998).Google Scholar
  23. 23. A. Melchiorri and N. Vittorio, in: Proceedings of the NATO Advanced Study Institute 1996, Strasbourg, astro-ph/9610029, (1996).Google Scholar
  24. 24. H. Kodama, A. Ishibashi, and O. Seto, Phys. Rev. D 62, 064022 (2000); D. Langlois, Phys. Rev. D 62, 126012 (2000); S. Mukohyama, Phys. Rev. D 62, 084015 (2000); D. Langlois, Phys. Rev. Lett. 86, 2212 (2001); H. Bridgman, K. Malik, and D. Wands, Phys. Rev. D 65, 043502 (2002); K. Koyama and J. Soda, Phys. Rev. D 65, 023514 (2002).Google Scholar
  25. 25. A. Riazuelo, F. Vernizzi, D. Steer and R. Durrer, hep-th/0205220, (2002).Google Scholar
  26. 26. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).Google Scholar
  27. 27. S. Weinberg, The Quantum Theory of Fields, Vol I p62ff, Cambridge University Press (1995).Google Scholar
  28. 28. J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000).Google Scholar
  29. 29. R. Durrer and P. Kocian, hep-th/0305181, (2003).Google Scholar
  30. 30. W. Goldberger and M. Wise, Phys. Lett. B475, 275 (2000).Google Scholar
  31. 31. J. Lesgourges and L. Sorbo, hep-th/0310007, (2003).Google Scholar

Authors and Affiliations

  • Ruth Durrer
    • 1
  1. 1.Université de Genève, Département de Physique Théorique, 24 Quai E. Ansermet, 1211 GenèveSwitzerland

Personalised recommendations