Advertisement

Single-Electron Devices

  • Jürgen Weis
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 658)

Abstract

The electrical charge is quantized in the elementary quantum –e carried by single electrons. In mesoscopic systems at sufficiently low temperature, this discrete elementary charge can give rise to peculiar electrostatic effects. With achieving the ability of making small devices on the scale of less than few hundred nanometers, devices based on single-electron charging effects have been proposed and realized in the last 15 years.

Keywords

Coulomb Blockade Tunnel Coupling Anderson Impurity Model Charge Stability Diagram Coulomb Blockade Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Single Charge Tunneling, volume B 294 of NATO ASI Series, ed. by H. Grabert, M.H. Devoret (Plenum Press, New York 1992)Google Scholar
  2. 2. K.K Likharev: ‘Single-electron devices and their applications’. Proceedings of the IEEE 87, 606 (1999)Google Scholar
  3. 3. U. Meirav, E.B. Foxman: ‘Single-electron phenomena in semiconductors’. Semicond. Sci. Technol. 10, 255 (1995)Google Scholar
  4. 4. L.P. Kouwenhoven, Ch.M. Marcus, P.L. McEuen, S. Tarucha, R.M Westerwelt, N.S. Wingreen: ‘Electron transport in quantum dots’. In: Mesoscopic Electron Transport, ed. by L.L. Sohn et al. (Kluwer Academic Publishers, Dordrecht 1997)Google Scholar
  5. 5. L.P. Kouwenhoven, D.G. Austing, S. Tarucha: ‘Few-electron quantum dots’. Rep. Prog. Phys. 64, 701 (2001)Google Scholar
  6. 6. T. Chakraborty: Quantum Dots – A survey of the properties of artificial atoms (North-Holland, Amsterdam 1999)Google Scholar
  7. 7. G. Schön: ‘Single-electron tunneling’. In: Quantum Transport and Dissipation, ed. by T. Dittrich, P. Hänggi, G. Ingold, G. Kramer, B. Schön, W. Zwerger (VCH, Weinheim 1997) chapter 3Google Scholar
  8. 8. H. Schoeller: ‘Transport theory of interacting quantum dots’. In: Mesoscopic Electron Transport, ed. by L.L. Sohn et al.(Kluwer Academic Publishers, Dordrecht 1997)Google Scholar
  9. 9. T.M. Eiles, J.M. Martinis, M.H. Devoret: ‘Even-odd asymmetry of a superconductor revealed by the Coulomb blockade of Andreev reflection’. Phys. Rev. Lett. 70, 1862 (1993)Google Scholar
  10. 10. M. Tinkham: Introduction to Superconductivity (McGraw-Hill, New York 1996)Google Scholar
  11. 11. E.V. Sukhorukov, D. Loss: ‘Spintronics and spin-based qubits in quantum dots’. phys. stat. sol. 224, 855 (2001)Google Scholar
  12. 12. Y. Makhlin, G. Schön, A. Shnirman: ‘Quantum-state engineering with josephson-junction devices’. Rev. Mod. Phys. 73, 357 (2001)Google Scholar
  13. 13. D.V. Averin, K.K. Likharev: ‘Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions’. J. Low Temp. Phys. 62, 345 (1986)Google Scholar
  14. 14. K.K. Likharev: ‘Single-electron transistors: Electrostatic analogs of the DC SQUIDS’. IEEE Transactions on Magnetics 23, 1142 (1987)Google Scholar
  15. 15. D.A. Averin, A.N. Korotkov, K.K. Likharev: ‘Theory of single-electron charging of quantum wells and dots’. Phys. Rev. B 44, 6199 (1991)Google Scholar
  16. 16. T.A. Fulton, G.D. Dolan: ‘Observation of single-electron charging effects in small tunnel junctions’. Phys. Rev. Lett. 59, 109 (1987)Google Scholar
  17. 17. L.D. Hallam, J. Weis, P.A. Maksym: ‘Screening of the electron-electron interaction by gate electrodes in semiconductor quantum dots’. Phys. Rev. B 53, 1452 (1996)Google Scholar
  18. 18. D. Pfannkuche, S.E. Ulloa: ‘Selection rules for spectroscopy of quantum dots’. Advances in Solid State Physics 35, 65 (1996)Google Scholar
  19. 19. M. Kastner: ‘Artificial atoms’. Phys. Today 46, 24 (1993)CrossRefGoogle Scholar
  20. 20. R.C. Ashoori: ‘Electrons in artifical atoms’. Nature 379, 413 (1996)Google Scholar
  21. 21. C.W.J. Beenakker: ‘Theory of Coulomb-blockade oscillations in the conductance of a quantum dot’. Phys. Rev. B 44, 1646 (1991)Google Scholar
  22. 22. S.M. Reimann, M. Manninen: ‘Electronic structure of quantum dots’. Rev. Mod. Phys. 74, 1283 (2002)CrossRefGoogle Scholar
  23. 23. J. Weis, R.J. Haug, K. v. Klitzing, K. Ploog: ‘Transport spectroscopy of a single quantum dot’. Semicond. Sci. Technol. 9, 1890 (1994)Google Scholar
  24. 24. J. Weis, R.J. Haug, K. v. Klitzing, K. Ploog: ‘Competing channels in single-electron tunneling through a quantum dot’. Phys. Rev. Lett. 71, 4019 (1993)Google Scholar
  25. 25. A.T. Johnson, L.P Kouwenhoven, W. de Jong, N.C. van der Vaart, C.J.P.M. Harmans, C.T. Foxon: ‘Zero-dimensional states and single electron charging in quantum dots’. Phys. Rev. Lett. 69, 1592 (1992)Google Scholar
  26. 26. E.B. Foxman, P.L. McEuen, N.S. Wingreen, Y. Meir, P.A. Belk, N.R. Belk, M.A. Kastner: ‘Effects of quantum levels on transport through a Coulomb island’. Phys. Rev. B 47, 10020 (1993).Google Scholar
  27. 27. J.M. Kinaret, Y. Meir, N.S. Wingreen, P. Lee, X.-G. Wen: ‘Conductance through a quantum dot in the fractional quantum Hall regime’. Phys. Rev. B 45, 9489 (1992)Google Scholar
  28. 28. D. Weinmann, W. Häusler, B. Kramer: ‘Spin blockades in linear and nonlinear transport through quantum dots’. Phys. Rev. Lett. 74, 984 (1995)Google Scholar
  29. 29. J.J. Palacios, L. Martin-Moreno, C. Tejedor: ‘Magnetotunneling through quantum boxes in a strong-correlation regime’. Europhys. Letters 23, 495 (1993)Google Scholar
  30. 30. D. Pfannkuche, S.E. Ulloa: ‘Selection rules for transport excitation spectroscopy of few-electron quantum dots’. Phys. Rev. Lett. 74, 1194 (1995)Google Scholar
  31. 31. K. Jauregui, W. Häusler, D. Weinmann, B. Kramer: ‘Signatures of electron correlations in the transport properties of quantum dots’. Phys. Rev. B 53, 1713 (1996)Google Scholar
  32. 32. G. Zimmerli, R.L. Kautz, J.M. Martinis: ‘Voltage gain in the single-electron transistor’. Appl. Phys. Lett. 61, 2616 (1992)CrossRefGoogle Scholar
  33. 33. P. Lafarge, H. Pothier, E.R. Williams, D. Esteve, C. Urbina, M.H. Devoret: ‘Direct observation of macroscopic charge quantization’. Z. Phys. B 85, 327 (1991)Google Scholar
  34. 34. V.A. Krupenin, D.E. Presnov, A.B. Zorin, M.N. Niemeyer: ‘Aluminum single electron transistors with islands isolated from the substrate’. J. Low Temp. Phys. 118, 287 (2000)Google Scholar
  35. 35. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober: ‘The radio-frequency single-electron transistor (rf-SET): A fast and ultrasensitive electrometer’. Science 280, 1238 (1998)Google Scholar
  36. 36. Y.Y. Wei, J. Weis, K. von Klitzing, K. Eberl: ‘Single-electron transistor as an electrometer measuring chemical potential variations’. Appl. Phys. Lett. 71, 2514 (1997)Google Scholar
  37. 37. M.J. Yoo, T.A. Fulton, H.F. Hess, R.L. Willett, L.N. Dunkelberger, R.J. Chichester, L.N. Pfeiffer, K.W. West: ‘Scanning single-electron transistor microscopy: Imaging individual charges’. Science 276, 579 (1997)Google Scholar
  38. 38. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe: ‘Kelvin probe force microscopy’. Appl. Phys. Lett. 58, 2921 (1991)CrossRefGoogle Scholar
  39. 39. J. Weis, R.J. Haug, K. von Klitzing, K. Ploog: ‘Single-electron tunneling transistor as a current rectifier with potential-controlled current polarity’. Semicond. Sci. Technol. 10, 877 (1995)Google Scholar
  40. 40. A.N. Korotkov, R.H. Chen, K.K. Likharev: ‘Possible performance of capacitively coupled single-electron transistors in digital circuits’. J. Appl. Phys. 78, 2520 (1995)Google Scholar
  41. 41. J. Weis: Electrical Transport Through Quantum Dot Systems. Habilitationsschrift, Universität Stuttgart, Stuttgart, Germany 2002Google Scholar
  42. 42. A.W. Lo: ‘Some thoughts on digital components and circuit techniques’. IRE Trans. on Electronic Computers 10, 416 (1961)Google Scholar
  43. 43. J.R. Tucker: ‘Complementary digital logic based on the ”Coulomb blockade”’. J. Appl. Phys. 72, 4399 (1992)Google Scholar
  44. 44. L. Kouwenhoven: ‘Coupled Quantum Dots as Artifical Molecules’. Science 268, 1440 (1995)Google Scholar
  45. 45. R.H. Blick, D. Pfannkuche, R.J. Haug, K. von Klitzing, K. Eberl: ‘Formation of a Coherent Mode in a Double Quantum Dot’. Phys. Rev. Lett. 80, 4032 (1998)Google Scholar
  46. 46. L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, A. van den Enden, C.J.P.M. Harmans, C.T. Foxon.: ‘Quantized current in a quantum dot turnstile’. Z. Phys. B 85, 381 (1991)Google Scholar
  47. 47. H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret: ‘Single-Electron Pump Based on Charging Effects’. Europhysics Letters 17, 249 (1992)Google Scholar
  48. 48. R.L. Kautz, M.W. Keller, J.M. Martinis: ‘Leakage and counting errors in a seven-junction electron pump’. Phys. Rev. B 60, 8199 (1999)Google Scholar
  49. 49. V.I. Talyanskii, J.M. Shilton, M. Pepper, C.J.B. Ford, E.H. Linfield, D.A. Ritchie, G.A.C. Jones: ‘Single-Electron transport in a one-dimensional channel by Radio Frequencies’. Phys. Rev. B 56, 15180 (1997)Google Scholar
  50. 50. J. Ebbecke, G. Bastian, M. Blöcker, K. Pierz, F.J. Ahlers: ‘Enhanced quantized current driven by surface acoustic waves’. Appl. Phys. Lett. 77, 2601 (2000)Google Scholar
  51. 51. A. Erbe, C. Weiss, W. Zwerger, R.H. Blick: ‘Nanomechanical Resonator Shuttling Single Electrons at Radio Frequencies’. Phys. Rev. Lett. 87, 096106 (2001)Google Scholar
  52. 52. J.P. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen: ‘Thermometry by arrays of tunnel-junctions’. Phys. Rev. Lett. 73, 2903 (1994)CrossRefGoogle Scholar
  53. 53. J.P. Pekola, L.J. Taskinen, Sh. Farhangfar: ‘One- and two-dimensional tunnel junction arrays in weak Coulomb blockade regime: Absolute accuracy in thermometry’. Appl. Phys. Lett. 76, 3747 (2000)Google Scholar
  54. 54. D. Weinmann, W. Häusler, B. Kramer: ‘Transport properties of quantum dots’. Ann. Physik 5, 652 (1996).Google Scholar
  55. 55. D.V. Averin, Y.V. Nazarov: ‘Macroscopic quantum tunneling of charge and co-tunneling’. In: Single Charge Tunneling, volume B 294 of NATO ASI Series, ed. by H. Grabert, M.H. Devoret (Plenum Press, New York, 1992) pp. 217–247Google Scholar
  56. 56. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner: ‘Kondo effect in a single-electron transistor’. Nature 391, 156 (1998)Google Scholar
  57. 57. S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven: ‘A tunable Kondo effect in quantum dots’. Science 281, 540 (1998)Google Scholar
  58. 58. J. Schmid, J. Weis, K. Eberl, K. von Klitzing: ‘A quantum dot in the limit of strong coupling to reservoirs’. Physica B 256, 182 (1998)Google Scholar
  59. 59. J. Schmid, J. Weis, K. Eberl, K. von Klitzing: ‘Absence of odd-even parity behaviour for Kondo resonances in quantum dots’. Phys. Rev. Lett. 84, 5824 (2000)Google Scholar
  60. 60. W.G. van der Wiel, S. De Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven: ‘The Kondo effect in the unitary limit’. Science 289, 210 (2000)Google Scholar
  61. 61. L.I. Glazman, M.É. Raikh: ‘Resonant Kondo transparency of a barrier with quasilocal impurity states’. JETP Lett. 47, 453 (1988)Google Scholar
  62. 62. T.K. Ng, P.A. Lee: ‘On-site Coulomb repulsion and resonant tunneling’. Phys. Rev. Lett. 61, 1768 (1988)Google Scholar
  63. 63. P.W. Anderson: ‘Localized magnetic states in metals’. Phys. Rev. 124, 41 (1961)Google Scholar
  64. 64. S. Sasaki, S. De Franceschi, J.M. Elzerman, W.G. van der Wiel, M. Eto, S. Tarucha, L.P. Kouwenhoven: ‘Kondo effect in an integer-spin quantum dot’. Nature 405, 764 (2000)Google Scholar
  65. 65. M. Keller, U. Wilhelm, J. Schmid, J. Weis, K. von Klitzing, K. Eberl: ‘Quantum dot in high magnetic fields: Correlated tunneling of electrons probes the spin configuration at the edge of the dot’. Phys. Rev. B 64, 033302 (2001)Google Scholar
  66. 66. U. Wilhelm, J. Schmid, J. Weis, K. von Klitzing: ‘Two electrostatically coupled quantum dots as a realization of the Anderson impurity model’. Physica E 9, 625 (2001)Google Scholar
  67. 67. U. Wilhelm, J. Schmid, J. Weis, K. von Klitzing: ‘Experimental evidence for spinless Kondo effect in two electrostatically coupled quantum dot systems’. Physica E 14, 385 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jürgen Weis
    • 1
  1. 1.Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1StuttgartGermany

Personalised recommendations