Skip to main content

Mineralogical Separation by Selective Dissolution

  • Chapter
Handbook of Soil Analysis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexsandrova LN (1960) The use or pyrophosphate for isolating free humic substances and their organic-mineral compounds from the soil. Soviet Soil Sci., 190-197

    Google Scholar 

  • Aomine S and Jackson ML (1959) Allophane determination in ando soils by cation exchange delta value. Soil Sci. Soc. Am. Proc., 23, 210-214

    Google Scholar 

  • Atkinson RR, Posner AM and Quirk J (1968) Crystal nucleation in Fe (III) solutions and hydroxyde gels. J. Inorg. Nucl. Chem., 30, 2371-2381

    Article  Google Scholar 

  • Avery BW and Bascomb CL (1982) Soil Survey Laboratory Methods., Soil Survey of England-Wales (Harpenden), 6

    Google Scholar 

  • Baize D(1988) Guide Des Analyses Courantes En Pédologie: Choix-Expression - Présentation - Interprétation., INRA, 172 pages

    Google Scholar 

  • Ballantyne AKD, Anderson DW and Stonehouse HB (1980) Problems associated with extracting Fe and Al from saskatchewan soils by pyrophosphate and low speed centrifugation. Can. J. Soil Sci., 60, 141-143

    Google Scholar 

  • Bentley SP, Clark NJ and Smalley IJ (1980) Mineralogy of a Norwegian postglacial clay and some geotechnical implications. Can. Miner., 18, 535-547

    Google Scholar 

  • Borggaard OK (1976) Selective extraction of amorphous iron oxide by EDTA from a mixture of amorphous iron oxide, goethite and hematite. J. Soil Sci., 27, 478-486

    Article  Google Scholar 

  • Bruckert S(1979) Analyse des complexes organo-minéraux des sols. In Pédologie2, constituants et propriétés du sol, Bonneau M. and Souchier B. ed. Mason, IX, 187-209

    Google Scholar 

  • Cambier P and Sposito G (1991) Adsorption of citric acid by synthetic pseudoboehmite. Clays Clay Miner., 39, 369-374

    Article  Google Scholar 

  • Campbell AS and Schwertmann U (1985) Evaluation of selective dissolution extractants in soil chemistry and mineralogy by diferential X-Ray diffraction. Clay Miner., 20, 515-519

    Article  Google Scholar 

  • Colmet-Daage F, Gautheyrou J, Gautheyrou M and De Kimpe C (1973) Etude des sols à allophane dérivés de matériaux volcaniques des Antilles et d’Amérique latine à l’aide de techniques de dissolution différentielle. Ière partie. Etude des produits solubilisés. Cah. ORSTOM série Pédol., XI, 97-120

    Google Scholar 

  • Cornell RA, Posner AM and Quirck J.P (1976) Kinetics and mechanisms of the acid dissolution of goethite (α-Fe OOH). J. Inorg. Nucl. Chem., 38, 563-567

    Article  Google Scholar 

  • Cornell RM and Schindler PW (1987) Photochemical dissolution of goethite in acid/oxalate solution. Clays and clay Miner., 35, 347-352

    Article  Google Scholar 

  • Cornell RM, Posner AM and Quirck J.P (1974) Crystal morphology and the dissolution of goethite. J. Inorg. Nucl. Chem., 36, 1937-1946

    Article  Google Scholar 

  • Cornell R.M., Posner A.M and Quirk JP (1975) The complete dissolution of goethite. J. Appl. Chem. Biotechnol., 25, 701-706

    Article  Google Scholar 

  • De Endredy AS (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner. Bull., 29, 209-217

    Article  Google Scholar 

  • Deb BC (1950) The estimation of free iron oxides in soils and clays and their removal. J. Soil Sci., 1, 212-220

    Article  Google Scholar 

  • Duchaufour Ph and Souchier B (1966) Note sur une méthode d’extraction combinée de l’Aluminium et du fer libres dans les sols. Sci. du Sol, 1, 17-29

    Google Scholar 

  • Farmer VC and Fraser AR (1978) Synthetic imogolite, a tubular hydroxy-aluminium silicate. In International Clay Conference., Elsevier, Amsterdam, 547-553

    Google Scholar 

  • Farmer VC, Fraser AR and Tait JM (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and soils by infrared spectroscopy. Geochim. Cosmochim. Acta, 43, 1417-1420

    Article  Google Scholar 

  • Follett EAC, McHardy WJ, Mitchell BD and Smith BFL (1965) Chemical dissolution techniques in the study of soil clays. Clay Miner., 6, 23-43

    Article  Google Scholar 

  • Franzmeier DP, Hajek BF and Simonson C.H (1965) Use of amorphous material to identifiy spodic horizons. Soil Sci. Soc. Am.Proc., 29, 737-743

    Article  Google Scholar 

  • Hashimoto I and Jackson ML (1960) Rapid dissolution of allophane and kaolinite and halloysite after dehydratation. Clays clay Miner., 7, 102-113

    Article  Google Scholar 

  • Henry S (1958) Synthèse de quelques oxydes de fer au laboratoire. C.R. du XXXI Congrès intern. de Chimie Industrielle (Liège)., Mercurius, 1-3

    Google Scholar 

  • Hetier JM and Jeanroy E (1973) Solubilisation différentielle du fer, de la silice et de l’alumine par le réactif oxalate-dithionite et la soude diluée. Pédologie, 23, 85-99

    Google Scholar 

  • Holmgren GGS (1967) A rapid citrate-dithionite extractable procedure. Soil Sci. Soc. Am. Proc., 31, 210-211

    Article  Google Scholar 

  • Hsu PH (1977) Aluminium hydroxydes and oxyhydroxyde. In Minerals in Soil Environments, Dixon JB Weed SB and ed., Soil Sci. Sc. Am., 99-143

    Google Scholar 

  • Hsu PH (1984) Aluminium hydroxides and oxyhydroxides in soils: recent developents. Annu. Meeting and Am. Soc. Agron

    Google Scholar 

  • Jeanroy E and Guillet B (1981) The occurence of suspended ferruginous particles in pyrophosphate extracts of some soil horizons. Geoderma, 26, 95-105

    Article  Google Scholar 

  • Jeanroy E (1983) Diagnostic des formes du fer dans les pédogénèses tempérées. Evaluation par les réactifs chimiques d’extraction et apports de la spectrométrie Mossbauer. (études des formes organiques du fer amorphe dans les sols)., Thèse Doctorat, Nancy, 109-129

    Google Scholar 

  • Kampf N and Schwertmann U (1982) The 5M-NaOH concentration treatment for iron oxides in soils. Clays clay Miner., 30, 401-408

    Article  Google Scholar 

  • Klamt E (1985) Reports of meetings. Iron in soil and clay minerals. Bad Windesheim, West germany, July 1-13 1985. Bull. Soc. Int. Sci. du Sol, 2, 9

    Google Scholar 

  • Krasnodebska-Ostrega B, Emons H and Golimowski J (2001) Selective leaching of elements associated with Mn-Fe oxides in forest soil, and comparison of two sequential extraction methods. Fresenius J. Anal. Chem., 371, 385-390

    Article  Google Scholar 

  • Kwong KF and Huang PM (1979) The relative influence of low-molecular-weight complexing organic acids on the hydrolysis and precipitation of Aluminium. Soil Sci., 128, 337-342

    Article  Google Scholar 

  • Lewis DG and Schwertmann U (1979) The influence of Al on iron oxides. Part III - Preparation of Al goethites in M KOH. Clay Miner., 14, 115-126

    Article  Google Scholar 

  • Lewis DG and Schwertmann U (1979) The influence of Al on the formation of iron oxides. Part IV: The influence of [Al], [OH] and temperature. Clays clay Miner., 27, 195-200

    Article  Google Scholar 

  • Loveland PJ and Bullock P (1976) Chemical and mineralogical properties of brown podzolic soils in comparison with soils of other groups. J. Soil Sci., 27, 523-540

    Article  Google Scholar 

  • Loveland PJ and Digby P (1984) The extraction of Fe and Al by 0,1 M pyrophosphate solutions: a comparison of some techniques. J. Soil Sci., 35, 243-250

    Article  Google Scholar 

  • Mc Keague JA and Day JH (1966) Dithionite and oxalate-extractable Fe and Ag as aids in differentiating various classes of soils. Canad. J. Soil Sci., 46, 13-22

    Article  Google Scholar 

  • Mc Keague JA(1967) An evaluation of0,1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can. J. Soil Sci., 47, 95-99

    Article  Google Scholar 

  • Neaman A, Mouélé F, Trolard F, Bourrié G (2004a) Improved methods for selective dissolution of Mn oxides : applications for studying trace element associations. Appl. Geochem., 19, 973-979

    Article  Google Scholar 

  • Neaman A, Waller B, Mouélé F, Trolard F, Bourrié G (2004b) Improved methods for selective dissolution of manganese oxides from soils and rocks. Eur. J. Soil Sci., 55, 47-54

    Article  Google Scholar 

  • Norrish K and Taylor RM (1961) The isomorphous replacement of iron by aluminium in soil goethites. J. Soil Sci., 12, 294-306

    Article  Google Scholar 

  • Petersen L (1976) Podzols and podzolization., Thesis Copenhagen (Danmark)

    Google Scholar 

  • Pollard RJ, Cardile CM, Lewis DG and Brown LJ (1992) Characterization of FeOOH polymorphs and ferrihydrite using low-temperature applied-field, Mösshauer spectroscopy. Clay Miner., 27, 57-71

    Article  Google Scholar 

  • Quantin P et Lamouroux M(1974) Adaptation de la méthode cinétique de Ségalen à la détermination des constituants minéraux de sols variés. Cah. ORSTOM, sér. Pédol., XII, 1, 13-46

    Google Scholar 

  • Quigley RM, Haynes JE, Bohdanowicz A and Gwyn QHJ (1985) Geology, geotechnique, mineralogy and geochemistry of Leda clay from deep Boreholes, Hawkesbury Area. Ontario Geol. Surv., study 29, 128 pages

    Google Scholar 

  • Ryan JN and Gschwend PM (1991) Extraction of iron oxides from sediments using reductive dissolution by titanium (III). Clays and clay Miner., 39, 509-518

    Article  Google Scholar 

  • Schuppli PA, Ross GJ and McKeague JA (1983) The effective removal of suspended materials from pyrophosphate extracts of soil from tropical and temporate regions. Soil Sci. Soc. Am. J., 47, 1026-1032

    Article  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch photochemische extraktion mit saurer Ammoniumoxalate-losung. Z. Pflanzenernähr. Dueng. Bodenk., 105, 194-202

    Article  Google Scholar 

  • Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant and Soil, 130, 1-25

    Article  Google Scholar 

  • Ségalen P (1968) Note sur une méthode de détermination des produits amorphes dans certains sols à hydroxydes tropicaux. Cahiers ORSTOM Série Pédol., 6, 106-126

    Google Scholar 

  • Shuman LM (1982) Separating soil iron and manganese oxyde fractions for microelement analysis. Soil Sci. Soc. Amer. J., 46, 1099-1102

    Article  Google Scholar 

  • Stol RJ, Van Helden AD and De Bruyn PL (1976) Hydrolysis-precipitation studies of aluminium solution. II - A kinetic study and a model. J. Colloïd Interface Sci., 57, 115-131

    Article  Google Scholar 

  • Stumm W (1985) The effects of complex-forming ligands on the dissolution of oxides and alumino silicates. In The chemistry of weathering., Reideil D Drever J ed., 55-74

    Google Scholar 

  • Tamm O (1922) Eine methode zur Bestimmungder anorqanischen komporentem des Gelkomplexes im Boden. Meddal. Statens sSkogförsöksanst, 19, 385-404

    Google Scholar 

  • Tamm O (1931) Monthly letter., Imperial bureau of soil science, 1 October

    Google Scholar 

  • Tamm O (1934a) Monthly letter., Imperial bureau of Soil Science, 34, August

    Google Scholar 

  • Tamm O (1934b) Ãœber die oxalat-methode in der chemischen Boden analyse. Medd. Skogförsökamsanst, 27 , 1-20

    Google Scholar 

  • Tokashiki Y, Dixon JB and Golden DC (1986) Manganese oxide analysis in soils by combined X-Ray diffraction and selective dissolution methods. Soil Sci. Soc. Amer. J., 50, 1079-1084

    Article  Google Scholar 

  • Torrance JK, Hedges SW and Bowen LH (1986) Mössbauer spectroscopic study of the iron mineralogy of post-glacial marine clays. Clays clay Miner., 34, 314-322

    Article  Google Scholar 

  • Yong R, Sethi AJ and La Rochelle P (1979) Significance of amorphous material relative to sensivity in some champlain clays. Canad. Geotechn. J., 16, 511-520

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Mineralogical Separation by Selective Dissolution. In: Handbook of Soil Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31211-6_6

Download citation

Publish with us

Policies and ethics