Mineralogical Separation by Selective Dissolution


Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid Mineralogical Analysis Selective Dissolution Ammonium Oxalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexsandrova LN (1960) The use or pyrophosphate for isolating free humic substances and their organic-mineral compounds from the soil. Soviet Soil Sci., 190-197Google Scholar
  2. Aomine S and Jackson ML (1959) Allophane determination in ando soils by cation exchange delta value. Soil Sci. Soc. Am. Proc., 23, 210-214Google Scholar
  3. Atkinson RR, Posner AM and Quirk J (1968) Crystal nucleation in Fe (III) solutions and hydroxyde gels. J. Inorg. Nucl. Chem., 30, 2371-2381CrossRefGoogle Scholar
  4. Avery BW and Bascomb CL (1982) Soil Survey Laboratory Methods., Soil Survey of England-Wales (Harpenden), 6Google Scholar
  5. Baize D(1988) Guide Des Analyses Courantes En Pédologie: Choix-Expression - Présentation - Interprétation., INRA, 172 pagesGoogle Scholar
  6. Ballantyne AKD, Anderson DW and Stonehouse HB (1980) Problems associated with extracting Fe and Al from saskatchewan soils by pyrophosphate and low speed centrifugation. Can. J. Soil Sci., 60, 141-143Google Scholar
  7. Bentley SP, Clark NJ and Smalley IJ (1980) Mineralogy of a Norwegian postglacial clay and some geotechnical implications. Can. Miner., 18, 535-547Google Scholar
  8. Borggaard OK (1976) Selective extraction of amorphous iron oxide by EDTA from a mixture of amorphous iron oxide, goethite and hematite. J. Soil Sci., 27, 478-486CrossRefGoogle Scholar
  9. Bruckert S(1979) Analyse des complexes organo-minéraux des sols. In Pédologie2, constituants et propriétés du sol, Bonneau M. and Souchier B. ed. Mason, IX, 187-209Google Scholar
  10. Cambier P and Sposito G (1991) Adsorption of citric acid by synthetic pseudoboehmite. Clays Clay Miner., 39, 369-374CrossRefGoogle Scholar
  11. Campbell AS and Schwertmann U (1985) Evaluation of selective dissolution extractants in soil chemistry and mineralogy by diferential X-Ray diffraction. Clay Miner., 20, 515-519CrossRefGoogle Scholar
  12. Colmet-Daage F, Gautheyrou J, Gautheyrou M and De Kimpe C (1973) Etude des sols à allophane dérivés de matériaux volcaniques des Antilles et d’Amérique latine à l’aide de techniques de dissolution différentielle. Ière partie. Etude des produits solubilisés. Cah. ORSTOM série Pédol., XI, 97-120Google Scholar
  13. Cornell RA, Posner AM and Quirck J.P (1976) Kinetics and mechanisms of the acid dissolution of goethite (α-Fe OOH). J. Inorg. Nucl. Chem., 38, 563-567CrossRefGoogle Scholar
  14. Cornell RM and Schindler PW (1987) Photochemical dissolution of goethite in acid/oxalate solution. Clays and clay Miner., 35, 347-352CrossRefGoogle Scholar
  15. Cornell RM, Posner AM and Quirck J.P (1974) Crystal morphology and the dissolution of goethite. J. Inorg. Nucl. Chem., 36, 1937-1946CrossRefGoogle Scholar
  16. Cornell R.M., Posner A.M and Quirk JP (1975) The complete dissolution of goethite. J. Appl. Chem. Biotechnol., 25, 701-706CrossRefGoogle Scholar
  17. De Endredy AS (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner. Bull., 29, 209-217CrossRefGoogle Scholar
  18. Deb BC (1950) The estimation of free iron oxides in soils and clays and their removal. J. Soil Sci., 1, 212-220CrossRefGoogle Scholar
  19. Duchaufour Ph and Souchier B (1966) Note sur une méthode d’extraction combinée de l’Aluminium et du fer libres dans les sols. Sci. du Sol, 1, 17-29Google Scholar
  20. Farmer VC and Fraser AR (1978) Synthetic imogolite, a tubular hydroxy-aluminium silicate. In International Clay Conference., Elsevier, Amsterdam, 547-553Google Scholar
  21. Farmer VC, Fraser AR and Tait JM (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and soils by infrared spectroscopy. Geochim. Cosmochim. Acta, 43, 1417-1420CrossRefGoogle Scholar
  22. Follett EAC, McHardy WJ, Mitchell BD and Smith BFL (1965) Chemical dissolution techniques in the study of soil clays. Clay Miner., 6, 23-43CrossRefGoogle Scholar
  23. Franzmeier DP, Hajek BF and Simonson C.H (1965) Use of amorphous material to identifiy spodic horizons. Soil Sci. Soc. Am.Proc., 29, 737-743CrossRefGoogle Scholar
  24. Hashimoto I and Jackson ML (1960) Rapid dissolution of allophane and kaolinite and halloysite after dehydratation. Clays clay Miner., 7, 102-113CrossRefGoogle Scholar
  25. Henry S (1958) Synthèse de quelques oxydes de fer au laboratoire. C.R. du XXXI Congrès intern. de Chimie Industrielle (Liège)., Mercurius, 1-3Google Scholar
  26. Hetier JM and Jeanroy E (1973) Solubilisation différentielle du fer, de la silice et de l’alumine par le réactif oxalate-dithionite et la soude diluée. Pédologie, 23, 85-99Google Scholar
  27. Holmgren GGS (1967) A rapid citrate-dithionite extractable procedure. Soil Sci. Soc. Am. Proc., 31, 210-211CrossRefGoogle Scholar
  28. Hsu PH (1977) Aluminium hydroxydes and oxyhydroxyde. In Minerals in Soil Environments, Dixon JB Weed SB and ed., Soil Sci. Sc. Am., 99-143Google Scholar
  29. Hsu PH (1984) Aluminium hydroxides and oxyhydroxides in soils: recent developents. Annu. Meeting and Am. Soc. AgronGoogle Scholar
  30. Jeanroy E and Guillet B (1981) The occurence of suspended ferruginous particles in pyrophosphate extracts of some soil horizons. Geoderma, 26, 95-105CrossRefGoogle Scholar
  31. Jeanroy E (1983) Diagnostic des formes du fer dans les pédogénèses tempérées. Evaluation par les réactifs chimiques d’extraction et apports de la spectrométrie Mossbauer. (études des formes organiques du fer amorphe dans les sols)., Thèse Doctorat, Nancy, 109-129Google Scholar
  32. Kampf N and Schwertmann U (1982) The 5M-NaOH concentration treatment for iron oxides in soils. Clays clay Miner., 30, 401-408CrossRefGoogle Scholar
  33. Klamt E (1985) Reports of meetings. Iron in soil and clay minerals. Bad Windesheim, West germany, July 1-13 1985. Bull. Soc. Int. Sci. du Sol, 2, 9Google Scholar
  34. Krasnodebska-Ostrega B, Emons H and Golimowski J (2001) Selective leaching of elements associated with Mn-Fe oxides in forest soil, and comparison of two sequential extraction methods. Fresenius J. Anal. Chem., 371, 385-390CrossRefGoogle Scholar
  35. Kwong KF and Huang PM (1979) The relative influence of low-molecular-weight complexing organic acids on the hydrolysis and precipitation of Aluminium. Soil Sci., 128, 337-342CrossRefGoogle Scholar
  36. Lewis DG and Schwertmann U (1979) The influence of Al on iron oxides. Part III - Preparation of Al goethites in M KOH. Clay Miner., 14, 115-126CrossRefGoogle Scholar
  37. Lewis DG and Schwertmann U (1979) The influence of Al on the formation of iron oxides. Part IV: The influence of [Al], [OH] and temperature. Clays clay Miner., 27, 195-200CrossRefGoogle Scholar
  38. Loveland PJ and Bullock P (1976) Chemical and mineralogical properties of brown podzolic soils in comparison with soils of other groups. J. Soil Sci., 27, 523-540CrossRefGoogle Scholar
  39. Loveland PJ and Digby P (1984) The extraction of Fe and Al by 0,1 M pyrophosphate solutions: a comparison of some techniques. J. Soil Sci., 35, 243-250CrossRefGoogle Scholar
  40. Mc Keague JA and Day JH (1966) Dithionite and oxalate-extractable Fe and Ag as aids in differentiating various classes of soils. Canad. J. Soil Sci., 46, 13-22CrossRefGoogle Scholar
  41. Mc Keague JA(1967) An evaluation of0,1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can. J. Soil Sci., 47, 95-99CrossRefGoogle Scholar
  42. Neaman A, Mouélé F, Trolard F, Bourrié G (2004a) Improved methods for selective dissolution of Mn oxides : applications for studying trace element associations. Appl. Geochem., 19, 973-979CrossRefGoogle Scholar
  43. Neaman A, Waller B, Mouélé F, Trolard F, Bourrié G (2004b) Improved methods for selective dissolution of manganese oxides from soils and rocks. Eur. J. Soil Sci., 55, 47-54CrossRefGoogle Scholar
  44. Norrish K and Taylor RM (1961) The isomorphous replacement of iron by aluminium in soil goethites. J. Soil Sci., 12, 294-306CrossRefGoogle Scholar
  45. Petersen L (1976) Podzols and podzolization., Thesis Copenhagen (Danmark)Google Scholar
  46. Pollard RJ, Cardile CM, Lewis DG and Brown LJ (1992) Characterization of FeOOH polymorphs and ferrihydrite using low-temperature applied-field, Mösshauer spectroscopy. Clay Miner., 27, 57-71CrossRefGoogle Scholar
  47. Quantin P et Lamouroux M(1974) Adaptation de la méthode cinétique de Ségalen à la détermination des constituants minéraux de sols variés. Cah. ORSTOM, sér. Pédol., XII, 1, 13-46Google Scholar
  48. Quigley RM, Haynes JE, Bohdanowicz A and Gwyn QHJ (1985) Geology, geotechnique, mineralogy and geochemistry of Leda clay from deep Boreholes, Hawkesbury Area. Ontario Geol. Surv., study 29, 128 pagesGoogle Scholar
  49. Ryan JN and Gschwend PM (1991) Extraction of iron oxides from sediments using reductive dissolution by titanium (III). Clays and clay Miner., 39, 509-518CrossRefGoogle Scholar
  50. Schuppli PA, Ross GJ and McKeague JA (1983) The effective removal of suspended materials from pyrophosphate extracts of soil from tropical and temporate regions. Soil Sci. Soc. Am. J., 47, 1026-1032CrossRefGoogle Scholar
  51. Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch photochemische extraktion mit saurer Ammoniumoxalate-losung. Z. Pflanzenernähr. Dueng. Bodenk., 105, 194-202CrossRefGoogle Scholar
  52. Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant and Soil, 130, 1-25CrossRefGoogle Scholar
  53. Ségalen P (1968) Note sur une méthode de détermination des produits amorphes dans certains sols à hydroxydes tropicaux. Cahiers ORSTOM Série Pédol., 6, 106-126Google Scholar
  54. Shuman LM (1982) Separating soil iron and manganese oxyde fractions for microelement analysis. Soil Sci. Soc. Amer. J., 46, 1099-1102CrossRefGoogle Scholar
  55. Stol RJ, Van Helden AD and De Bruyn PL (1976) Hydrolysis-precipitation studies of aluminium solution. II - A kinetic study and a model. J. Colloïd Interface Sci., 57, 115-131CrossRefGoogle Scholar
  56. Stumm W (1985) The effects of complex-forming ligands on the dissolution of oxides and alumino silicates. In The chemistry of weathering., Reideil D Drever J ed., 55-74Google Scholar
  57. Tamm O (1922) Eine methode zur Bestimmungder anorqanischen komporentem des Gelkomplexes im Boden. Meddal. Statens sSkogförsöksanst, 19, 385-404Google Scholar
  58. Tamm O (1931) Monthly letter., Imperial bureau of soil science, 1 OctoberGoogle Scholar
  59. Tamm O (1934a) Monthly letter., Imperial bureau of Soil Science, 34, AugustGoogle Scholar
  60. Tamm O (1934b) Über die oxalat-methode in der chemischen Boden analyse. Medd. Skogförsökamsanst, 27 , 1-20Google Scholar
  61. Tokashiki Y, Dixon JB and Golden DC (1986) Manganese oxide analysis in soils by combined X-Ray diffraction and selective dissolution methods. Soil Sci. Soc. Amer. J., 50, 1079-1084CrossRefGoogle Scholar
  62. Torrance JK, Hedges SW and Bowen LH (1986) Mössbauer spectroscopic study of the iron mineralogy of post-glacial marine clays. Clays clay Miner., 34, 314-322CrossRefGoogle Scholar
  63. Yong R, Sethi AJ and La Rochelle P (1979) Significance of amorphous material relative to sensivity in some champlain clays. Canad. Geotechn. J., 16, 511-520Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations