Advertisement

Mineralogical Characterisations by X-Ray Diffractometry

Keywords

Clay Mineral Mineralogical Analysis Basal Reflection Intercalation Complex Clayey Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anton O and Rouxhet PG (1977) Note on the intercalation of kaolinite, dickitte and halloysite by dimethyl-sulfoxide. Clays lay Minerals, 25, 259-263CrossRefGoogle Scholar
  2. Bayliss P (1986) Quantitative analysis of sedimentary minerals by powder X-Ray diffraction. Powder diffraction, 1, 37-39Google Scholar
  3. Brindley GW and Brown G (1980) Crystal structure of clay minerals and their X-Ray identification. Mineralo. Soc., 415-438Google Scholar
  4. Calvert CS (1984) Simplified, complete CsCl-hydrazine-dimethylsulfoxide intercalation of kaolinite. Clays Clay Miner., 32, 125-130CrossRefGoogle Scholar
  5. Chassin P (1974) Influence de la stéréochimie des diols sur la formation des complexes interfoliaires de la montmorillonite calcique. Clay Miner., 11, 23-30CrossRefGoogle Scholar
  6. Chung FH (1974a) Quantitative interpretation of X-Ray diffraction pattern of mixtures. I- matrix flushing method for quantitative multi-component analysis. J. Appl. Crystallog., 7, 519-525CrossRefGoogle Scholar
  7. Chung FH (1974b) Quantitative interpretation of X-Ray diffraction patterns of mixtures. II - Adiabatic principle of X-Ray diffraction analysis of mixtures. J. Appl. Crystallog., 7, 526-531CrossRefGoogle Scholar
  8. Churchman GJ, Whitton JS, Claridge GGC and Theng BKG (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Miner., 32, 241-248CrossRefGoogle Scholar
  9. Decarreau A (1990) Les poudres : techniques expérimentales et interprétation des diagrammes - Facteurs déterminant le mode d’empilement. In Structure, propriétés et applications. Société Française de Minéralogie et cristallographie, Groupe Français des Argiles, 209-236Google Scholar
  10. Eltantawy IM and Arnold PM (1974) Ethylene glycol sorption by homoionic montmorillonites. J. Soil Sci., 25, 99-110CrossRefGoogle Scholar
  11. Gonzalez Garcia S. and Sanchez Camazano M. (1968) Differenciation of kaolinite from chlorite by treatment with dimethylsulfoxyde. Clay Miner. Bull., 7, 447-450CrossRefGoogle Scholar
  12. Klug HP and Alexander LE (1974) X-Ray diffraction procedures. Wiley 2nd editionGoogle Scholar
  13. Modre DZ and Dixon JB (1970) Glycerol vapor adsorption on clay minerals and montmorilllonite soil clays. Soil Sci. Soc. Am. Proc., 34, 816-822CrossRefGoogle Scholar
  14. Olejnik S, Aylmore LAG, Posner AM and Quirk JP (1968) Infra-red spectra of kaolin mineral-dimethyl sulfoxide complexes. J. Phys. Chem., 72, 241-249CrossRefGoogle Scholar
  15. Paterson E, Bunch JL and Duthie DML (1986) Preparation of randomly oriented samples for X.Ray diffractometry. Clay Miner., 21, 101-106CrossRefGoogle Scholar
  16. Range KJ, Range A and Weiss A (1969) Fireclay type kaolinite or fire-clay mineral? Experimental classification of kaolinite - halloysite minerals. Proceedings of the International Clays Conference (Tokyo). Israel Universities Press, 3-13Google Scholar
  17. Roberts JM Jr (1974) X-Ray diffraction and chemical techniques for quantitative soil clay mineral analysis. Engineering Thesis, Pennsylvania State University, 78 pagesGoogle Scholar
  18. Robert M, Hardy M and Elsass F (1991) Crystallochemistry, properties and organization of soil clays derived from major sedimentary rocks in France. Clay Miner., 26: 409-420CrossRefGoogle Scholar
  19. Thomson A, Duthie DM, Wilson MT (1972) Randomly oriented powders for quantitative determination of clay minerals. Clay Miner., 9, 345-348CrossRefGoogle Scholar
  20. Wada K and Yamada H (1968) Hydrazine intercalation, intercalation for differentiation of kaolin mineral, from chlorites. Am. Miner., 53, 334-339Google Scholar

Bibliography General

  1. Alekseeva TV, Alekseev AO, Sokolovska Z, Khainos M, Sokolowska Z and Hajnos M (1999) Relationship between mineralogical composition and physical properties of soils. Pochvovedenie., 5, 604-613Google Scholar
  2. Brindley GW and Brown E (1980) Crystal structure of clay minerals and their X-Ray identification., Mineralogical Society, 495 pGoogle Scholar
  3. Caillère S, Hénin S and Rautureau M(1982) Minéralogie des argiles,1, Masson, 184 pGoogle Scholar
  4. Caillère S, Hénin S and Rautureau M(1982) Minéralogie des argiles,2, Masson, 189 pGoogle Scholar
  5. Charley H (1989) Clay Sedimentology., Springer Belin Heidelberg New York, 623 pGoogle Scholar
  6. Dixon JB and Weed SB (1989) Minerals in soil environments., Soil Science Society of America (USA), 2e édition, 1244 pp.Google Scholar
  7. Gautheyrou J and Gautheyrou M (1979) Etude des argiles par diffraction X. Synthèse bibliographique pour l'identification des argiles., Guide pratique. ORSTOM-Antilles, notes de laboratoires, ORSTOM (26 pages + 2 annexes). ICDD (JCPDS-ASTM)) Mineral powder diffraction File - PDF-1 DATA BASE (powder diagramms, interlayer spaces, relative intensity, chemical name, mineralogical formula) - PDF-2 DATA BASE (powder diagramm, interlayer spaces, relative intensity, chemical name, mineralogical name, Miller’sindice, unit cell, physical properties, references) - Shorten ICDD ref: eliminate -version papier (SET 1 à 36, SET 1 à 8 révisés, SETS 37, 38, 39, 40, 41) -version disque compact (CD-ROM DISC SETS 1-41 inorganique - organique pour IBM PC, VAX, McIntosh) - SEARCH MANUAL Alphabetical index -inorganic phases. Hanawalt index - inorganic phases (remise à jour annuelle), ICDD Newton Square PA 19073-3273 (USA)Google Scholar
  8. Inigo AC, Tessier D, Pernes M (2000) Use of X-ray transmission diffractometry for the study of clay-particle orientation at different water contents. Clays Clay Miner., 48, 682-692CrossRefGoogle Scholar
  9. Kovda IV, Morgun EG, Tessier D, Pernes M (2000) Particle orientation in clayey soils according to transmission diffractometry data, 8, 989-1003Google Scholar
  10. Manhães RST, Auler LT, Sthel MS, Alexandre J, Massunaga MSO, Carrió JG, dos Santos DR, da Silva EC, Garcia-Quiroz A and Vargas H (2002) Soil characterisation using X-ray diffraction, photoacoustic spectroscopy and electron paramagnetic resonance. Appl. Clay Sci., 21, 303-311.CrossRefGoogle Scholar
  11. Martins E de S, de S Martins E (2000) Integrated method of mineralogical characterization of deeply weathered soils. Comunicado Tecnico Embrapa Cerrados., Brazil, 37, 5 pp.Google Scholar
  12. Millot G (1964) Géologie des argiles. Masson, Paris, 499 pp.Google Scholar
  13. Newman AC (1987) Chemistry of clays and clay minerals., Mineralogical society, monograph no 6, 480 pGoogle Scholar
  14. Chen PY (1977) Table of key lines in X-Ray powder diffraction patterns of minerals in clays and associated rocks. Dept. of Natural resources, (Indiana, USA). Geological Survey occasional paper no 21, 67 pGoogle Scholar
  15. Robert M (1975) Principes de détermination quantitative des minéraux argileux à l'aide des rayons X. Problèmes particuliers posés pour les minéraux argileux les plus fréquents dans les sols des régions tempérées. Ann. Agron., 26, 363-399Google Scholar
  16. Stucki JW (Goodman BA and Schwertmann U (1985) Iron in soils and clay minerals., D. Reidel, 893 p.Google Scholar
  17. Teissier D (1984) Etude expérimentale de l’organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessiccation et de la réhumectation., INRA, Thèse doc. Etat, 361 pp.Google Scholar
  18. Thorez (1975) Phyllosilicates and clay minerals. A laboratory handbook for their X-Ray diffraction analysis., Lelotte Ed., 579 pGoogle Scholar
  19. Wilson MJ (1987) A handbook of determinative methods in clay mineralogy., Blackie - Chapman and Hall, 308 p.Google Scholar

Preparation of Oriented Aggregates on Porous Ceramic Plate

  1. Kinter EB and Diamond S (1956) A new method for preparation and treatment of oriented-aggregat specimens of soil clays for X-Ray diffraction analysis. Soil Sci., 81, 111-120CrossRefGoogle Scholar
  2. La Manna JM and Bowers FH (1985) A suction apparatus for orienting clay minerals into porous ceramic tile. Soil Sci. Soc. Am. J., 49, 1318-1319CrossRefGoogle Scholar
  3. Rich CI (1969) Suction apparatus for mounting clay specimens on ceramic tile for X-Ray diffraction. Soil Sci. Soc. Am. Proc., 33, 815-816Google Scholar
  4. Shaw HF (1972) The preparation of oriented clay mineral specimens for X-Ray diffraction analysis by a suction unto ceramic tile method. Clay Miner., 9, 349-350CrossRefGoogle Scholar

Saturation of Clays by Cations

  1. Brindley GW and Ertem G (1971) Preparation and solvation properties of some variable charge montmorillonite. Clays Clay Miner., 19, 399-404CrossRefGoogle Scholar
  2. Bühmann C, Fey MV and De Villiers JM (1985) Aspects of the X-Ray identification of swelling clay minerals in soils and sediments. S. Afri. J. Sci., 81, 505-509Google Scholar
  3. Calvet R and Prost R (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner., 19, 175-186CrossRefGoogle Scholar
  4. Hofmann U and Klemen R (1980) Verlust der Austanschfahigeit von lithiumionen an bentonit darch erhitzung (perte d’échangeabilité des ions lithium dans les bentonites après chauffage). Zeit. Anorganisc Chem., 262, 95-99CrossRefGoogle Scholar
  5. Lim CH and Jackson ML (1986) Expandable phyllosilicate reactions with lithium on heating. Clays Clay Miner., 34, 346-352CrossRefGoogle Scholar

Saturation, Solvation, Intercalation Complexe, Dissolution

  1. Barnhisel RI and Bertsch PM (1989) Chlorites and hydroxy-interlayered vermiculite and smectite. In Minerals in soil environments Dixon JB and Weed SB ed., Soil Sci. Soc. of Am., 729-740Google Scholar
  2. Barnhisel RI (1977) Chlorites and hydroxy interlayered vermiculite and smectite, 331-356. In Minerals in soil environments, Dixon JB and Weed SB ed., Soil Sci. Soc. Am., Monogr., 331-356Google Scholar
  3. Brindley GW (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites. Clay Miner., 6, 237-260CrossRefGoogle Scholar
  4. Brindley GW and Ertem G (1971) Preparation and solvation properties of some variable charge montmorillonites. Clays clay Miner., 19, 399-404CrossRefGoogle Scholar
  5. Churchman GJ (1990) Relevance of different intercalation tests for distinguishing halloysite from kaolinite in soils. Clays and clay Minerals, 38, 591-599CrossRefGoogle Scholar
  6. Follet EAC, McHardy WJ, Mitchell BD and Smith BFL (1965) Chemical dissolution techniques in the study of clays. Part 1. Clay Miner., 6, 23-24CrossRefGoogle Scholar
  7. Novich BE and Martin RT (1983) Solvation methods for expandable layers. Clays Clay Miner., 31, 235-238CrossRefGoogle Scholar
  8. Suquet H, Iiyama JT, Kodama H and Pezerat N (1977) Synthesis and swelling properties of saponites with increasing layer charge. Clay Miner., 25, 231-242CrossRefGoogle Scholar
  9. Suquet M, Calle de la C and Pezerat H (1975) Swelling and structural organization of saponite. Clays Clay Miner., 23, 1-9CrossRefGoogle Scholar
  10. Theng BKG, Churchman GJ, Whitton JS and Claridge CGC (1984) Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays Clay miner., 32, 249-258CrossRefGoogle Scholar
  11. Walker GF (1958) Reactions of expanding-lattice clay minerals with glycerol and ethylene glycol. Clay Miner. Bull., 302-313Google Scholar
  12. White JL and Jackson ML (1947) Glycerol solvation of soil clays for X-Ray diffraction analysis. Soil Sci. Soc. Am. Proc., 11, 150-154Google Scholar

Preparation of Iron Oxides

  1. Brown G and Wood IG (1985) Estimation of iron oxides in soil clays by profile refinement combined with differential X-Ray diffraction. Clay Minerals, 20, 15-27CrossRefGoogle Scholar
  2. Campbell AS and Schwertmann U (1985) Evaluation of selected dissolution extractants in soil chemistry and mineralogy by differential X-Ray diffraction. Clay Miner., 20, 515-519CrossRefGoogle Scholar
  3. Meunier A and Velde B (1982) X-Ray difffraction of oriented clays in small quantities (0,1 mg). Clay Miner., 17, 259-262CrossRefGoogle Scholar
  4. Paterson E, Bunch SL and Duthie DML (1986) Preparation of randomly oriented samples for X-Ray diffractometry. Clay Miner., 21, 101-106CrossRefGoogle Scholar
  5. Schwertmann U and Taylor RM (1989) Iron oxides. In Minerals in Soil environments, Dixon JB and Weed SB ed. Soil Sci. Soc. Am., 379-438Google Scholar
  6. Schwertmann U, Murad E and Schulze DG (1982) Is there Holocene reddening (hematite formation) in soils of a xeric temperate area. Geoderma, 27, 209-223CrossRefGoogle Scholar
  7. Torrent J, Schwertmann U and Schulze DG (1980) Iron oxyde mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 23, 191-208CrossRefGoogle Scholar

Quantitative XRD

  1. Austin GS and Leininger RK (1976) Effect of heat-treating mixed-layer illite-smectite as related to quantitative clay mineral determinations. J. Sedim. Petrol., 46, 206-215.Google Scholar
  2. Brime C (1985) The accuracy of X-Ray diffraction methods for determining mineral mixtures. Miner. Mag., 49, 531-538CrossRefGoogle Scholar
  3. Carter RJ, Hatcher MT and Di Carlo L (1987) Quantitative analysis of quartz and cristobalite in bentonite clay based products by X-ray diffraction. Anal. Chem., 59, 513-519CrossRefGoogle Scholar
  4. Cody RD and Thomson GL (1976) Quantitative X-ray powder diffraction analysis of clays using an oriented internal standard and pressed discs of bulk shale. Clays Clay Miners, 24, 224-231CrossRefGoogle Scholar
  5. Davis BL (1980) Standardless X-Ray diffraction quantitative analysis. Atmosph. Environ., 14, 217-220CrossRefGoogle Scholar
  6. Decleer J (1985) Comparaison between mounting techniques for clay minerals as a function of quantitative estimations by X-ray diffraction. Bull. Soc. Belge Géol , 94, 275-281Google Scholar
  7. Gavish E and Friedman GF (1973) Quantitative analysis of calcite and Mg-calcite by X-ray diffraction effect of grinding on peak height and peak area. Sediment , 20, 437-444CrossRefGoogle Scholar
  8. Goehner RP (1982) X-Ray diffraction quantitative analysis using intensity ratios and external-standards. Adv. in X-Ray Analy., 25, 309-313Google Scholar
  9. Heath GR and Pissas NG (1979) A method for the quantitative estimation of clay minerals in North Pacific deep sea sediments. Clays Clay Miner., 27, 175-184CrossRefGoogle Scholar
  10. Hogson M. and Dudgney ANL (1984) Estimation of clay proportions in mixtures by X-Ray. Diffraction and computerized chemical mass balance. Clays and Clay Miner., 32, 19-28CrossRefGoogle Scholar
  11. Hooton DH and Giorgetta NE (1977) Quantitative X-Ray diffraction analysis by a direct calculation method. X-Ray Spectrom., 6, 2-5CrossRefGoogle Scholar
  12. Hubbard CR and Smith DK (1977) Experimental and calculated standards for quantitative analysis by powder diffraction. Adv. X-Ray Anal., 20, 27-39Google Scholar
  13. Hubbard CR, Evans EH and Smith DK (1976) The reference intensity ratio I/Ic for computer simulated powder patterns. J. Appl. Cryst., 9, 169-174CrossRefGoogle Scholar
  14. Johnson LJ, Chu CH and Hussey GA (1985) Quantitative clay mineral analysis simultaneous linear equations. Clays and Clay Miner., 33, 107-117.CrossRefGoogle Scholar
  15. Kahle M, Kleber M and Reinhold J (2002) Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma, 109, 191-205CrossRefGoogle Scholar
  16. Norrish K and Taylor RM (1962) Quantitative analysis by X-Ray diffraction. Clay Miner. Bull., 5: 98-109CrossRefGoogle Scholar
  17. Ouhadi VR and Yong RN (2003) Impact of clay microstructure and mass absorption coefficient on the quantitative mineral identification by XRD analysis. Appl. Clay Sci., 23, 141-148CrossRefGoogle Scholar
  18. Parrot JF, Verdoni PA and Delaune-Mayere (1985) Analyse modale semiquantitative d’après l’étude des Rayons X. Analusis, 13, 373-378Google Scholar
  19. Pawloski GA (1985) Quantitative determination of mineral content of geological samples by X-Ray diffraction. Am. Mineral., 70, 663-667Google Scholar
  20. Persoz (1969) Fidélité de l’analyse quantitative des poudres de roches par diffration X. Bull. Centre Rech. Pau (SNPA), 3, 324-331Google Scholar
  21. Renault J (1987) Quantitative phase analysis by linear regression of chemistry on X-Ray diffraction intensity. Powder Diffract., 2, 96-98Google Scholar
  22. Ruffell A. and Wiltshire P. (2004) Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis. Forensic Science International, 145, 13-23Google Scholar
  23. Taylor RM and Norrish K (1972) The measurement of orientation distribution and its application to quantitative determination of clay minerals. Clay Miner., 9, 345-348CrossRefGoogle Scholar
  24. Tomita K and Takahashi H (1985) Curves for the quantification of mica/smectite and chlorite/smectite interstratifications by X-Ray powder diffraction. Clays Clay Miner., 33, 379-390.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations