Advertisement

Analysis of Extractable and Total Elements

Keywords

Inductively Couple Plasma Mass Spectrometry Flame Atomic Absorption Spectrometry Inorganic Analysis Plasma Emission Spectrometry Acetylene Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbey S (1992) Evaluation and application of reference materials for the analysis of rocks and minerals. Chem. Geol., 95, 123-130CrossRefGoogle Scholar
  2. Abo F (1984) Influence du bore et du manganèse sur la production et le développement du blé sur sols de régions tempérée et aride., Thèse doctorat ès-sciences, Université Paris VII, 89-90Google Scholar
  3. Albert P (1964) L'analyse par radioactivation. In Applications des sciences nucléaires, Lefort M. ed. A de Visscher, Gauthier-Villars, ParisGoogle Scholar
  4. Aubert H and Pinta M (1971) Les éléments traces dans les sols. ORSTOM, ParisGoogle Scholar
  5. Baize D (1997) Teneur totale en éléments traces dans les sols., INRA, Versailles, FranceGoogle Scholar
  6. Bernas B (1968) A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry. Anal. Chem., 40, 1682-1686CrossRefGoogle Scholar
  7. Boumans PWJM (1981) Conversion of «Tables of Spectral-Line Intensities» for NBS copper arc into tables for inductively coupled argon plasmas. Spectrochim. Acta., 36B, 169-203Google Scholar
  8. Bourrelier PH and Berthelin J ed. (1998) Contamination des sols par les éléments en traces: les risques et leur gestion., Académie des sciences, France, rapport N o 42, Lavoisier (Technique et documentation), ParisGoogle Scholar
  9. Burman JO (1987) Applications: geological. In Inductively Coupled Plasma Emission Spectroscopy, Part 2, Boumans PWJM ed. Wiley, 27-47Google Scholar
  10. Callot G, Chamayou H, Maertens C and Salsac L (1982) Mieux comprendre les interactions sol-racine., INRA, ParisGoogle Scholar
  11. Castaing R (1961) The fundamentals of quantitative electron probe micro-analysis. Adv. X-Ray Anal., 4, 351-369Google Scholar
  12. Charlot G (1984) Chimie analytique quantitative, tome II., Masson, ParisGoogle Scholar
  13. Chayla B, Jaffrezic H and Joron JL (1973) Analyse par activation dans les neutrons épithermiques. Application à la détermination d'éléments en trace dans les roches. C.R. Acad. Sci. Paris, 277, D, 273-275Google Scholar
  14. Claisse G (1968) Etude expérimentale de l'analyse aux trois acides - comportement du quartz pur à l'attaque triacide. Cah. Orstom sér. Pédol., VI, 129-149Google Scholar
  15. Coppenet M and Juste C (1982) Trace elements essential to the growth of plants and toxicity phenomena. In Constituents and properties of soils, Bonneau M and Souchier B ed. Masson, Paris, 458-466Google Scholar
  16. Cox (1968) Development of a yield response prediction and manganese soil test interpretation for soybeans. Agron. J., 60, 521-524Google Scholar
  17. Das AK, Chakraborty R, Guardia M de la, Cervera ML and Goswami D (2001) multielement determination in fly ash after microwave-assisted digestion of samples. Talanta., 54, 975-981CrossRefGoogle Scholar
  18. Deb BC (1950) The estimation of free oxides in soils and clays and their removal. J. Soil Sci., 1, 212-220CrossRefGoogle Scholar
  19. Erdtmann G and Soyka W (1975a) The gamma-ray lines of radionuclides, ordered by atomic and mass number, part 1. J. Radioanal. Chem., 26, 375-495CrossRefGoogle Scholar
  20. Erdtmann G and Soyka W (1975b) The gamma-ray lines of radionuclides, ordered by atomic and mass number, part 2. J. Radioanal. Chem., 27, 137-286CrossRefGoogle Scholar
  21. Falkner KK, Klinkhammer GP, Ungerer CA and Christie DM (1995) Inductively coupled plasma mass spectrometry in geochemistry. Annu. Rev. Earth Planet. Sci., 23, 409-449Google Scholar
  22. FD X31-146, (1996) Détermination de l'indice de pouvoir chlorosant (IPC) selon Juste and Pouget. In Qualité des sols, AFNOR, 117-125Google Scholar
  23. Gambrell RP and Patrick WH (1982) Manganèse. In Methods of soil analysis, part 2 - chemical and microbiological properties 2nd ed., Page AL, Miller RH and Keeney DR ed. ASA-SSSAGoogle Scholar
  24. Greenland DJ and Hayes MHB (1983) Soils and soil chemistry. In The chemistry of soil constituents, Greenland DJ and Hayes MHB ed. Wiley, 1-27Google Scholar
  25. Hardy F and Follet-Smith RR (1931) Studies in tropical soils. - II. Some characteristic igneous rocks soil profiles in British Guiana, South america. J. Agric. Sci., 739pGoogle Scholar
  26. Helmke PA (1982) Neutron Activation Analysis. In Methods of soil analysis, part 2 - chemical and microbiological properties, ASA-SSSAGoogle Scholar
  27. He LiYuan and Xiang YaLing (1999) Soil sampling error in agricultural environment. Chinese J. Appl. Ecol., 10, 353-356Google Scholar
  28. Helmke PA (1996) Neutron Activation Analysis. In Methods of soil analysis, part 3 - chemical Methods, Bigham JM and Bartels JM ed. SSSA-ASA, Madison, WI Etats-Unis,SSSA, 141-159Google Scholar
  29. Hoenig M and Kersabiec AM de (1990) L'atomisation électrothermique en spectrométrie d'absorption atomique., Masson, ParisGoogle Scholar
  30. Hossner LR (1996) Dissolution for total elemental analysis. In Methods of Soil Analysis, Part 3, Chemical methods, Bigham JM and Bartels JM ed. SSSA-ASA, Madison, WI Etats-Unis, 49-64Google Scholar
  31. Jarvis I (1994a) Sample preparation for ICP-MS. In Handbook of inductively coupled plasma mass spectrometry, Jarvis KE, Gray AL and Houk RS ed. Blackie academic & professional, 172-224Google Scholar
  32. Jarvis I (1994b) Elemental analysis of solutions and applications. In Handbook of Inductively Coupled Plasma Mass Spectrometry, Jarvis KE, Gray AL and Houk RS ed. Blackie Academic and Professional, 225-264Google Scholar
  33. Jeanroy E (1972) Analyse totale des silicates naturels par spectrométrie d'absorption atomique. Application au sol et à ses constituants. Chim. Anal., 54, 159-166Google Scholar
  34. Jeanroy E (1974) Analyse totale par spectrométrie d'absorption atomique, des roches, sols, minerais, ciments après fusion au métaborate de strontium. Analusis, 2, 703-712Google Scholar
  35. Jones AA (1982) X-ray Fluorescence Spectrometry. In Methods of Soil Analy-sis - part 2, Page AL, Miller RH and Keeney DR ed. ASA-SSSA, 85-121Google Scholar
  36. Jones AA (1991) X-Ray Fluorescence Analysis. In Soil analysis - modern instrumental techniques, 2nd ed. Smith K.A. ed. DekkerGoogle Scholar
  37. Karathanasis AD and Hajek BF (1996) Elemental Analysis by X-ray Fluorescence Spectroscopy. In Methods of soil analysis, part 3, Bigham JM and Bartels JM ed. SSSA-ASA, Madison, WI Etats-Unis, 161-223Google Scholar
  38. Kawasaki A and Arai S (1996) Evaluation of digestion methods for multi-elemental analysis of organic wastes by inductively coupled plasma mass spectrometry. Soil Sci. Plant Nutr., 42, 251-260Google Scholar
  39. Koons RD and Helmke PA (1978) Neutron Activation Analysis of Standard Soils. Soil Sci. Soc. Am. J., 42, 237-240Google Scholar
  40. Lamothe PJ, Fries TL and Consul JJ (1986) Evaluation of a microwave oven system for the dissolution of geological samples. Anal. Chem., 58, 1881-1886CrossRefGoogle Scholar
  41. Le Cornec F and Corrège T (1997) Determination of uranium to calcium and strontium to calcium ratios in corals by Inductively Coupled Plasma Mass Spectrometry. J. Anal. Atom. Spectrom., 12, 969-973CrossRefGoogle Scholar
  42. Le Cornec F, Riandey C and Richard ML (1994) Minéralisation par micro-ondes de matériaux géologiques (roches et sols) et comparaison avec les méthodes classiques de mise en solution. In L'échantillonnage, du prélèvement à l'analyse, Rambaud D ed. Orstom, ParisGoogle Scholar
  43. Lederer CM and Shirley VS (1978) Table of isotopes, 7th ed. Wiley, New YorkGoogle Scholar
  44. Lim CH and Jackson ML (1982) Dissolution for total elemental analysis. In Methods of soil analysis, part 2, Page AL, Miller RH and Keeney DR ed. ASA-SSSAGoogle Scholar
  45. Lindsay WL and Norvell WA (1978) Development of a DTPA test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J., 42, 421-428CrossRefGoogle Scholar
  46. Lis SA, Hopke PK and Fasching JL (1975a) Gamma-ray tables for neutron, fast-neutron and photon activation analysis -1– List of all the nuclides with their associated gamma-rays in order of increasing atomic number and mass. J. Radioanal. Chem., 24, 125-247CrossRefGoogle Scholar
  47. Lis SA, Hopke PK and Fasching JL (1975b) Gamma-ray tables for neutron, fast-neutron and photon activation analysis - 2 - list of all the nuclides with their associated gamma-rays in order of increasing atomic number and mass. J. Radioanal. Chem., 25, 303-428CrossRefGoogle Scholar
  48. Martens DC and Lindsay WL (1990) Testing soils for copper, iron, manganese an zinc. In Soil testing and plant analysis 3nd ed., Westerman RL ed. SSSA book series 3, 231-260Google Scholar
  49. NF ISO 11466 (1995) Eléments en traces solubles dans l'eau régale. In Qualité des sols, AFNOR, 283-292Google Scholar
  50. NF ISO 14870 (X 31-427), 1998) Extraction des oligo-éléments par une solution tamponnée de DTPA, AFNOR, à l'étude NF X 31-147 (1996) Sols, sédiments - Mise en solution totale par attaque acide. In Qualité des sols, AFNOR, 127-138Google Scholar
  51. NF X 31-151 (1993) Sols, sédiments, boues de stations d'épuration - Mise en solution d'éléments métalliques en traces (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) par attaques acides. In Qualité des sols, AFNOR, 139-145Google Scholar
  52. NF X 31-120 (1992) Détermination du cuivre, du manganèse et du zinc -Extraction par l'acétate d'ammonium en présence d'EDTA. In Qualité des sols, AFNOR, 75-81Google Scholar
  53. NF X 31-121 (1993) Détermination du cuivre, du manganèse, du zinc et du fer -Extraction en présence de DTPA. In Qualité des sols, AFNOR, 83-89Google Scholar
  54. NF X 31-122 (1993) Extraction du bore soluble à l'eau bouillante. In Qualité des sols., AFNOR, 91-95Google Scholar
  55. Njopwouo D and Orliac M (1979) Note sur le comportement de certains minéraux à l'attaque triacide. Cah. Orstom sér. Pédol., XVII, 283-328Google Scholar
  56. Norrish K and Chappell BW (1977) X-ray fluorescence spectrometry. In Physical methods in determinative mineralogy, 2nd ed. Zussman J ed. Academic Press Inc., 201-272Google Scholar
  57. Norrish K and Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta., 33, 431-453CrossRefGoogle Scholar
  58. Pansu M, Gautheyrou J and Loyer JY (2001) Soil analysis- sampling, instrumentation and quality control, 489 p, Balkema, Lisse, Abington, Exton, TokyoGoogle Scholar
  59. Paycheng C (1980) Méthodes d'analyse utilisées au laboratoire commun de Dakar., Document Orstom - Dakar - Paris, 103 pGoogle Scholar
  60. Peck TR and Soltanpour PN (1990) The principles of soil testing. In Soil testing and plant analysis 3nded., Westerman RL ed. SSSA book series 3, 3-9Google Scholar
  61. Pétard J (1993) Les méthodes d'analyse. Tome 1: analyses de sols., Notes techniques No. 5, Orstom, Nouméa, ParisGoogle Scholar
  62. Pinta M (1962) Recherche et dosage des éléments traces., Dunod, Paris, 726 pGoogle Scholar
  63. Pr ISO CD 14869 (1998) Soil quality - determination of total trace elements content - part 1: digestion with hydrofluoric and perchloric acids for the determination of total contents - part 2: solubilisation by allkaline fusion., AFNOR,Google Scholar
  64. Paris Ramsey MH and Coles BJ (1992) Strategies of multielement calibration for maximising the accuracy of geochemical analysis by inductively coupled plasma-atomic emission spectrometry. Chemi. Geol., 95, 99-112CrossRefGoogle Scholar
  65. Riandey C, Alphonse P, Gavinelli R and Pinta M (1982) Détermination des éléments majeurs des sols et des roches par spectrométrie d'émission de plasma et spectrométrie d'absorption atomique. Analusis, 10, 323-332Google Scholar
  66. Risser JA and Baker DE (1990) Testing soils for toxic metals. In Soil testing and plant analysis 3nd ed., Westerman RL ed. SSSA book series 3, 275-298Google Scholar
  67. Shinotsuka K and Ebihara M (1997) Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry - a comparative study with radiochemical neutron activation analysis. Anal. Chim. Acta., 338, 237-246CrossRefGoogle Scholar
  68. Smith KA ed. (1991) Soil analysis - modern instrumental techniques, 2nd ed.Google Scholar
  69. Dekker Soltanpour PN, Johnson GW, Workman SM, Jones JB and Miller RO (1996) Inductively coupled plasma emission spectrometry and inductively coupled plasma mass spectrometry. In Methods of soil analysis, part 3, chemical methods, Bigham JM and Bartels JM ed. SSSA-ASA, Madison, WI Etats-Unis, 91-139Google Scholar
  70. Tan KH (1996) Soil sampling, preparation and analysis, Dekker Totland M, Jarvis I and Jarvis K (1992) An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. In Plasma spectrometry in the earth sciences, Jarvis I and Jarvis K ed. Chemical geology, special issue, 35-62Google Scholar
  71. Trolard F, Bourrié G, Jaffrezic A (2002) Distribution spatiale et mobilité des ETM dans les sols en région d'élevage intensif en Bretagne. In: Les éléments traces métalliques dans les sols - approches fonctionnelles et spatiales, (coord. M. Tercé & D. Baize), pp. 183-199. INRA, Collection un point sur…, ParisGoogle Scholar
  72. Turekian KK and Wedepohl KH (1961) Distribution of the elements in some major units of the earth' crust. Geol. Soc. Am. Bull, 72, 175-191CrossRefGoogle Scholar
  73. US Environmental Protection Agency, 1986) Acid digestion of sediment, sludge and soils. In Test methods for evaluating solid waste, SW-846.Google Scholar
  74. USEPA, Cincinnati Vernet M and Govindaraju K (1992) Mise en solution des matériaux avant analyse., Techniques de l'ingénieur, P 222, 1-16Google Scholar
  75. Voïnovitch IA (1988) Analyses des sols, roches et ciments - méthodes choisies., Masson, ParisGoogle Scholar
  76. Walsh JN (1992) Use of multiple internal standards for high-precision, routine analysis of geological samples by inductively coupled plasma-atomic emission spectrometry. Chem. Geol., 95, 113-121CrossRefGoogle Scholar
  77. Winge RK, Fassel VA, Peterson VJ, Floyd MA (1982) ICP emission spectrometry: on the selection of analytical lines, line coincidence tables, and wavelength tables. Appl. Spectrosc., 36, 210-221CrossRefGoogle Scholar
  78. Wright RJ and Stuczynski T (1996) Atomic absorption and flame emission spectrometry. In Methods of soil analysis, part 3, chemical methods , Bigham JM and Bartels JM ed. SSSA-ASA, Madison, WI Etats-Unis, 65-90Google Scholar
  79. Zischa M and Knapp G (1997) Microwave-assisted sample decomposition progress and challenges. Analysis Europa, Novembre, 18-23Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations