Isoelectric and Zero Charge Points


Variable Charge Inorganic Analysis Ionic Force Anion Exchange Capacity Indifferent Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrow NJ (1987) Reactions with variable-charge soils. In Martinus Nijhoff -Developments in plant and soil science, eiden 31, 191 pGoogle Scholar
  2. Blok L and de Bruyn PL (1970) The ionic double layer et ZnO/solution surface. I - The experimental point of zero charge. J. Colloid Interface Sci., 32, 518-525CrossRefGoogle Scholar
  3. Breeuwsma A (1973) Adsorption of ion on hematite (αFe2O3). Ph.D. diss. Wageningen (Hollande)Google Scholar
  4. Cruz-Huerta L and Kientz DG (2000) Electric charge of andosols of Cofre de Perote', Veracruz, Mexico. Terra, 18, 115-124Google Scholar
  5. Gangaiya P and Morrison RJ (1987) A review of the problems associated with applying the terms surface and zero point of charge to soils. Commun. in Soil Science Plant Analysis, 18, 1431-1451CrossRefGoogle Scholar
  6. Gautheyrou J and Gautheyrou M (1981) Comparison of electric charges in soils formed in a tropical climate. Fourth Intern. Soil classification workshop Rwanda, 7 pGoogle Scholar
  7. Gautheyrou J and Gautheyrou M (1981) Point de charge zéro des sols à allophane, à imogolite, vertisols et oxisols de Guadeloupe et Martinique (Antilles françaises). ORSTOM-Antilles, notes laboratoire, 29 pGoogle Scholar
  8. Gustafsson JP (2001) The surface chemistry of imogolite. Clays and Clay Minerals, 49, 73-80CrossRefGoogle Scholar
  9. Hendershot WH and Lavkulich LM (1979) The effect of sodium chloride saturation and organic matter removal on the value of zero point of charge. Soil Sci., 128, 136-141CrossRefGoogle Scholar
  10. Hendershot WH and Lavkulich LM (1983) Effect of sesquioxyde coatings on surface charge of standard mineral and soil samples. Soil Sci. Soc. Am. J., 47, 1252-1260Google Scholar
  11. Parker JG, Zelazny LW, Sampath S and Harris WG (1979) A critical evaluation of the extension of zero point of charge (ZPC) theory to soil systems. Soil Sci. Soc. Am. J., 43: 668-673CrossRefGoogle Scholar
  12. Parks GA and De Bruyn PL (1962) The zero point of charge of oxides. J. Phys. Chem., 66, 967-973CrossRefGoogle Scholar
  13. Segalen P, Gautheyrou M, Guenin H, Caracho E, Bosch D and Cardenas A (1983) Etude d'un sol dérivé de péridotite dans l'ouest de Cuba. Aspects physiques et chimiques (1). Cahiers ORSTOM, série Pédologie, XX, 239-245Google Scholar
  14. Sparks DL (1986) Soil physical chemistry., CRC, Boca Raton, 308 pGoogle Scholar
  15. Sposito G (1981) The operational definition of the zero point charge in soils. Soil Sci. Soc. Am. J., 45, 292-297Google Scholar
  16. Sposito G (1984) The surface chemistry of soils., Clarendon Oxford, 234 pGoogle Scholar
  17. Sposito G (1989) The chemistry of soils., Oxford University Press, 277 pGoogle Scholar
  18. Uehara G and Gillman G (1981) The mineralogy, chemistry and physics of tropical soils with variable charge clays., Westview Tropical Agriculture Series, 4, 170 pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations