Advertisement

Keywords

Particle Size Analysis Coarse Sand Manganese Dioxide Mineralogical Analysis Ultrasonic Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atterberg A (1912) Die mechanische Bodenanalyse und die klassifikation der mineral böden sechwedens. Int. Mitt. Bodenk. , 2, 312-342Google Scholar
  2. Baize D (2000)Guide des analyses courantes en pédologie., INRA, France, 257pGoogle Scholar
  3. Bouyoucos GS (1927) The hydrometer as a new method for mechanical analysis of soils. J. Soil Sci., 23, 343CrossRefGoogle Scholar
  4. Bouyoucos GS (1935) A hydrometer method for making mechanical analysis of soils. Bull. Am. Ceram. Soc., 14, 259Google Scholar
  5. Bouyoucos GS (1962) Hydrometer method improved for making particle size analysis of soils. Agron. J., 54, 464-465CrossRefGoogle Scholar
  6. Casagrande A (1934) Die Aräometer-methode zur Bestimmun der kornverteilung von Boden und anderen materialen. Springer J.Google Scholar
  7. De Leenheer L and Van Hove J (1956) Werkwijze voor de mechanische analyse met de kettinghydrometer. Rijksland Bouwhogeschool (Gand)., XXI, 249-274Google Scholar
  8. De Leenheer L and Maes L (1952) Analyse granulométrique avec l’hydromètre à chaîne. Bull. Soc. Belge de Géologie., 61, 138-164Google Scholar
  9. De Leenheer L, Van Ruymbeke M and Maes L (1955) L’analyse mécanique au moyen de l’hydromètre à chaîne. Silicates Industriels., Tome XX, n° 6-7, 1-7Google Scholar
  10. Delaune M, Reiffsteck M and Feller C (1991) L’analyse granulométrique de sols et sédiments à l’aide du microgranulomètre sédigraph 5000 et comparaison avec la méthode à la pipette Robinson. Cahiers ORSTOM sér. Pédol., 26, 183-189Google Scholar
  11. Gee GW and Bauder JW (1986) Particle-size analysis. In Methods of Soil Analysis. Part 1 Physical and Mineralogical Methods., Klute A. Ed. Chap. 15. American Society of Agronomy. Soil Sci. Soc. Am., 383-411Google Scholar
  12. Gras R (1988) Physique du sol pour l’aménagement, Masson, Paris, 587 pGoogle Scholar
  13. Hénin S (1976) Cours de physique du sol, vol. 1. Orstom-Editest, Bruxelles, 159 pGoogle Scholar
  14. Jackson (1969) Soil Chemical Analysis - Advanced Course., 2nd ed. University of Wisconsin, Madison, WIGoogle Scholar
  15. Mériaux S (1954) Contribution à l’étude de l’analyse granulométrique. Ann. Agro., I, 5-53, II, 149-205Google Scholar
  16. Pansu M, Gautheyrou J and Loyer JY (2001) Soil Analysis- Sampling, Instrumentation and Quality Control, Balkema publishers, Lisse, Abington, Exton, Tokyo, 512 pGoogle Scholar
  17. Pétard J (1993) Les méthodes d’analyse. T1 Analyse de sols., Notes techniques laboratoires communs d’analyse, Orstom, Nouméa, ParisGoogle Scholar
  18. Rouiller J, Burtin G and Souchier B (1972) La dispersion des sols dans l’analyse granulométrique. Méthode utilisant les résines échangeuses d’ions. Bull. ENSAIA, Nancy, France, 14, 183-204Google Scholar
  19. Stokes GG (1851) On the effect of the lateral friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc., 9, 8-106Google Scholar
  20. Susini J (1978) Realisation d’un ensemble automatique de lavage des sables de l’analyse granulométrique. Cah. ORSTOM Série Pédol., 16, 339-344Google Scholar
  21. Tamm O (1922) Eine Methode zur Bestian on vag der anorganischen komponenten des Gelkomplexes in Boden. Meddel. Staters Skogsfïrsöksanst (Suède), 19, 385-404Google Scholar
  22. Van Ruymbeke M and De Leenheer L (1954) Etude comparative d’analyses granulométriques par décantations successives et par l’hydromère à chaîne. Actes et C. R. du Vème Congrès International de la Science du Sol (Leopoldville), II, 322-328Google Scholar
  23. Vieillefon J (1979) Contribution à l’amélioration de l’étude analytique des sols gypseux. Cah. ORSTOM Sér. Pédol., XVII, 195-223Google Scholar
  24. X 31-107 (1983) Analyse granulométrique par sédimentation. Méthode de la pipette. In Qualité des sols 3°ed., AFNOR, 357-371Google Scholar

Bibliography Generality

  1. Barth HG and Shao-Tang Sun (1991) Particle size analysis. Anal. Chem., 63, 1R-10R.Google Scholar
  2. Chamayou H and Legros JP (1989) Les bases physiques, chimiques et  minéralogiques de la Science du sol, Tech. Vivantes, ACCT Presses Univ. de France, 593 p.Google Scholar
  3. Guillet B and Rouiller J (1979) La granulométrie. In Pédologie, constituants et propriétés des sols, Bonneau and Souchier ed., Masson, 317-321.Google Scholar
  4. Johnston, Farina MPW and Lawrence JY (1987) Estimation of soil texture from sample density. Commun. Soil Sci. Plant Anal., 18, 1173-1180.CrossRefGoogle Scholar
  5. Jones JL, Kay JJ, Park JJ and Bishop CK (1980) The determination of particle size distribution in soil. A collaborative study. J. Sci. Food Agric., 31, 724-729.CrossRefGoogle Scholar
  6. Loveland PJ and Whalley WR (1991) Particle size analysis. In Soil Analysis: Physical Methods., Smith KA, Mullins CEJ ed., Dekker, New York 271-328.Google Scholar
  7. Smith RB and Pratt DN (1984) The variability in soil particle size test results by various sub sampling techniques. J. Soil Sci., 35, 23-26.CrossRefGoogle Scholar
  8. Syvitski JPM (1991) Principles, methods and applications of particle size analysis. Cambridge Univ. Press., 366 pages.Google Scholar

Pre-treatment Organic Matters

  1. Douglas LA and Fiessinger F (1971) Degradation of clay minerals by H2O2 treatments to oxidize organic mater. Clays Clay Miner., 19, 67-68CrossRefGoogle Scholar
  2. Fisher WR (1984) The oxidation of sol organic matter by KBrO for particle size determination. Commun. Soil Sci. Plant Anal., 15, 1281-1284CrossRefGoogle Scholar
  3. Harada Y and Inoko A (1977) The oxidation products formed from soil organic matter by hydrogen peroxide treatment. Soil Sci. Plant Nutr., 23, 513-521Google Scholar
  4. Langeveld AD Van, Gaast SJ Van der and Eisma D (1978) A comparison of the effectiveness of eight methods for the removal of organic matter from clay. Clays Clay Miner., 26, 361-364CrossRefGoogle Scholar
  5. Lavkulich LM and Wiens JH (1970) Comparison of organic matter destruction by hydrogen peroxide and sodium hypochlorite and its effects on selected mineral constituents. Soil Sci. Soc. Am. Proc., 34, 755-758CrossRefGoogle Scholar
  6. Omueti JAI (1980) Sodium hypochlorite treatment for organic matter destruction in tropical soils of Nigeria. Soil Sci. Soc. Am. J., 44, 878-880CrossRefGoogle Scholar
  7. Sequi P and Aringhieri R (1977) Destruction of organic matter by hydrogen peroxide in the presence of pyrophosphate and its effect on soil specific surface area. Soil Sci. Soc. Am. J., 41, 340-342CrossRefGoogle Scholar
  8. Visser SA and Caillier M (1988) Observations on the dispersion and aggregation of clays by humic substances. I - Dispersive effects of humic acids. Geoderma ,42, 331-337CrossRefGoogle Scholar
  9. Vodyannitskii Yu N, Trukhin VT and Bagina OL (1989) The action of perhydral upon iron oxides in soil. Dokuchzer soil Sci. Inst. (Moscou), 1, 20-21Google Scholar

Eliminate Organo-Minerals Compounds

  1. Harward ME, Theisen AA and Evans DD (1962) Effect of iron removal and dispersion methods on clay mineral identification by X-Ray difraction. Soil Sci. Soc. Am. Proc., 26, 535-541CrossRefGoogle Scholar
  2. Mehra OP and Jackson ML (1960) Iron oxide removal from soils and clays by a dithiomite-citrate system buffered with sodium bicarbonate. In Clays and Clay Minerals. Proc. Seventh Conf. Natl Acad. Sci. Natl Res. Counc. Pub., 237-317Google Scholar

Eliminate Soluble Salts - Gypsum

  1. Rengasamy P (1983) Clay dispersion in relation to changes in the electrolyte composition of dialysed red-brown earth. J. Soil Sci., 34, 723-732Google Scholar
  2. Rivers ED, Hallmark CT, West LT and Drees LR (1982) A technique for rapid removal of gypsum from soil samples. Soil Sci. Soc. Am. J., 46, 1338-1340CrossRefGoogle Scholar

Suspension - Dispersion - Flocculation

  1. Balli P(1965) Critères de la qualité de la suspension en vue de l’analyse granulométrique. Science du sol, 1, 15Google Scholar
  2. Bartoli F, Burtin G and Herbillon AJ (1991) Disaggregation and clay dispersion of oxisols: Na Resin, a recommended methodology. Geoderma, 49, 301-317CrossRefGoogle Scholar
  3. Brewster GR (1980) Effects of chemical pretreatment on X-Ray powder diffraction characteristics of clay minerals derived from volcanic ash. Clays Clay Miner., 28, 303-310CrossRefGoogle Scholar
  4. Colmet-Daage F, Gautheyrou J, Gautheyrou M, Kimpe C de (1972) Dispersion et étude des fractions fines des sols à allophane des Antilles et d’Amérique latine. 1ère partie: Techniques de dispersion. Cah. Orstom, Sér. Pédol., Vol. X(2), 169-191Google Scholar
  5. Demolon A and Bastisse E (1935) Sur la dispersion des colloïdes argileux. Applications à leur extraction. Annales Agronomiques, 1-15Google Scholar
  6. Dong A, Chesters G and Simsiman GV (1983) Soil dispersibility. Soil Sci., 136, 208-212CrossRefGoogle Scholar
  7. Egashira K (1981) Floculation of clay suspensions separated from soils of different soil type. Soil Sci. Plant Nutr., 27, 281-287Google Scholar
  8. Forsyth P, Marcelja S, Mitchell DJ and Ninham BW (1978) Stability of clay dispersions. In Modidication of Soil Structure., Emerson, Bond, Dexter Ed. Wiley, New York. 2, 17-25Google Scholar
  9. Goldberg S and Forster HS (1989) Floculation of reference clays and arid soil clays as affected by electrolyte concentration, exchangeable section percentage, sodium adsorption ratio, pH and clay mineralogy. Annual Meeting - Clay Minerals Society, 26, 35Google Scholar
  10. Gupta RK, Bhumbla DK and Abrol IP (1984) Effect of sodicity, pH, organic matter and calcium carbonate on the dispersion behavior of soils. Soil Sci., 137, 245-251CrossRefGoogle Scholar
  11. Keren R(1991) Adsorbed sodium fraction’s effect on rheology of montmorillinite-kaolinite suspensions. Soil Sci. Soc. Am. J., 55, 376-379CrossRefGoogle Scholar
  12. Manfredini T, Pellacani GC, Pozzi P and Corradi AB (1990) Monomeric and oligomeric phosphates as deflocculants of concentrated aqueous clay suspensions. Appl. Clay Sci., 5, 193-201CrossRefGoogle Scholar
  13. Miller WP, Frenkel H and Newman KD (1990) FLoculation concentration and sodium/calcium exchange of kaolinitic soil clays. Soil Sci. Soc. Am. J., 54, 346-351CrossRefGoogle Scholar
  14. Ohtsubo M and Ibaraki M (1991) Particle-size characterzation of flocs and sedimentation volume in electrolyte clay suspensions. Appl. Clay Sci., 6, 181-194CrossRefGoogle Scholar
  15. Oreshkin NG (1979) Device for tating suspension samples for the particle-size analysis of soils. Soviet Soil Sci., 4, 136-138Google Scholar
  16. Reddy SR and Fogler HS (1981) Emulsion stability: determination from turbidity. J. Colloid Interface Sci., 79, 101-104CrossRefGoogle Scholar
  17. Reddy SR, Fogler HS (1981) Emulsion stability: delineation of different particle loss mechanisms. J. Colloid Interface Sci., 79, 105-113CrossRefGoogle Scholar
  18. Robinson GW (1933) The dispersion of soils in mechanical analysis. Bur. Soil Sci. Tech. Commun., 26, 27-28Google Scholar
  19. Shaviv A, Ravina I and Zaslavsky P (1988) Floculation of clay suspensions by an anionic soil conditioner. Appl. Clay Sci., 3, 193-203CrossRefGoogle Scholar

Ultrasonic Dispersion

  1. Arustamyants YEI (1990) Optimizing the ultrasonic preparation of soils for particle-size analysis. Pochvovedeniye, 12, 55-68Google Scholar
  2. Busacca AJ, Aniku JR and Singer MJ (1984) Dispersion of soils by an ultrasonic method that eliminates probe contact. Soil Sci. Soc. Am. J., 48, 1125-1129Google Scholar
  3. Edwards AP and Bremner JM (1967) Dispersion of soil particules by sonic vibrations. J. Soil Sci., 18, 1CrossRefGoogle Scholar
  4. Feller C, Burtin G and Herbillon A (1991) Utilisation des résines sodiques et des ultra-sons dans le fractionnement granulométrique de la matière organique des sols. Intérêt et limites. Science du sol, 29, 77-93Google Scholar
  5. Gregorich EG, Kachandski RG and Voroney RP (1988) Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions. Can. J. Soil Sci., 68, 395-403CrossRefGoogle Scholar
  6. Hinds AA and Lowe LE (1980) Dispersion and dissolution effects during ultrasonic dispersion of gleysolic soils in water and in electrolytes. Can. J. Soil Sci., 60, 329-335CrossRefGoogle Scholar
  7. Hinds AA and Lowe LE (1980) The use of an ultrasonic probe in soil dispersion and in the bulk isolation of organo-mineral complexes. Can. J. Soil Sci., 60, 389-392CrossRefGoogle Scholar
  8. Ilnicki P and Matelska U (1984) Ultrasound application for dispersion of soil samples for particle size analysis. Roezniki Gleboznaweze, 35, 15-24Google Scholar
  9. Mikhail EH and Briner GP (1978) Routine particle size analysis of soils using sodium hypochlorite and ultrasonic dispersion. Aust. J. Soil Res., 16, 241-244CrossRefGoogle Scholar
  10. Minkin MB, Mulyar IA and Mulyar AI (1985) An ultrasonic method of analysing of water extracts from soils. Pochvovedeniye, 3, 136-140Google Scholar
  11. Moen DE and Richardson JL (1984) Ultrasonic dispersion of soil aggregates stabilized by polyvinyl alcohol and T 403-glyoxal polymers. Soil Sci. Soc. Am. J., 48, 628-631CrossRefGoogle Scholar
  12. Morra MJ, Blank RR, Freeborn LL and Shafil B (1991) Size fractionation of soil organo-mineral complexes using ultrasonic dispersion. Soil Sci., 4, 294-303CrossRefGoogle Scholar
  13. Schulze DG and Dixon JB (1979) High gradient enzymatic separation of iron oxydes and other magnetic minerals from soils clays. Soil Sci. Soc. Am. J., 43, 793-799.CrossRefGoogle Scholar

Pipette Method

  1. Andreasen AHM and Andersen J (1930) Etude de l’influence de la dilution sur les résultats de l’analyse granulométrique par sédimentation. Kolloid Z., 50, 217CrossRefGoogle Scholar
  2. Bloom PR, Meter K and Crum JR (1985) Titration method for determination of clay-sized carbonates. Soil Sci. Soc. Am. J., 49, 1070-1073CrossRefGoogle Scholar
  3. Godse NG and Sannigrahi AK (1988) Comparative study on methods of particle-size analysis for vertisols. J. Indian Soc. Soil Sci., 36, 780-783Google Scholar
  4. Indorante SJ, Follmer LR, Hammer RD and Koenig PG (1990) Particle-size analysis by a modified pipette procedure. Soil Sci. Soc. Am. J., 54, 560-563Google Scholar
  5. Krumbein WC (1935) A time chart for mechanical analyses by the pipette method. J. Sediment. Petrol., 5, 93-95Google Scholar
  6. Miller WP and Miller DM (1987) A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal., 18, 1-15CrossRefGoogle Scholar
  7. Oreshkin NG (1979) Device for taking suspension samples for the particle-size analysis of soils. Soviet Soil Sci. (Pochvovedeniye), 4, 136-138Google Scholar
  8. Richter M and Svartz H (1984) Analisis granulometrico de suelos en escala reducida. Ciencia del suelo, 2, 1-8Google Scholar
  9. Shetron SG and Trettin CC (1984) Influence of mine tailing particle density on pipette procedures. Soil Sci. Soc. Am. J., 48, 418-420CrossRefGoogle Scholar

Hydrometer Method

  1. American Society for Testing and Materials (1972) Standard test methode for particle-size analysis of Soils - D 422-463. Annual Book of ASTM, 1985Google Scholar
  2. Barthokur NN (1986) Clay fraction determinations with Beta-ray gauge. Commun. Soil Sci. Plant Anal., 17, 533-545CrossRefGoogle Scholar
  3. Fontes LEF (1982) A new cylinder for sedimentation of soil suspension in the determination of the clay fraction by the hydrometer method. Revista brasileira de Ciencia do Solo, 6, 152-154Google Scholar
  4. Gee GW and Bauder JW (1979) Particle size analysis by hydrometer, a simplified method for routine textural analysis and a sensivity test of measurement parameters. Soil Sci. Soc. Am. J., 43, 1004-1007Google Scholar
  5. Johnson JE, Bowles JA and Knuteson JA (1985) Comparison of pretreatments and dispersants on clay determination by the hydrometer method. Commun. Soil Sci. Plant Anal., 16, 1029-1037CrossRefGoogle Scholar
  6. Sur HS and Kvkal SS (1992) A modified hydrometer procedure for particle size analysis. Soil Sci., 153, 1-4CrossRefGoogle Scholar

Instrumental Methods

  1. Arustamyants YEI (1992) Instrumental methods for determining the particle-size composition of soils. Scr. Tech., 101-117Google Scholar
  2. Barth, HG (1984) Modern Methods of Particle Size Analysis., Wiley, New York, 209 pagesGoogle Scholar
  3. Cooper LR, Haverland RL, Hendricks DM and Knisel WG (1984) Microtrac particle-size analyzer: an alternative particle-size determination method for sediment and soil. Soil Sci., 132, 138-146CrossRefGoogle Scholar
  4. Devyatykh GG, Karpov YU A, Krylov VA and Lazukina OP (1987) Laser-ultra microscopic method of determining suspended particles in high-parity liquids. Talanta, 34, 133-139CrossRefGoogle Scholar
  5. Hendrix WP and Orr C (1970) Automate sedimentation size analysis instrument. Particle Size Analysis, 133-146Google Scholar
  6. Hutton JT (1955) A method of particle size analysis of soils(balance de Plummet). CSIRO, Report, 11/55.Google Scholar
  7. Karsten JHM and Kotze WAG (1984) Soil particle analysis with the gamma alternation technique. Commun. Soil Sci. Plant Anal., 15, 731-739CrossRefGoogle Scholar
  8. Kirkland JJ and Yau WW (1983) Simultaneaous determination of particle size and density by sedimentation field flow fractionation (FFF). Anal. Chem., 55, 2165-2170CrossRefGoogle Scholar
  9. Kirkland JJ, Rementer SW and Yav WW (1981) Time-delayed exponential field-programmed sedimentation field flow fractionation for particle-size distribution analysis. Anal. Chem., 53, 1730-1736CrossRefGoogle Scholar
  10. Marshall TI (1956) A Plummett Balance for measuring the size distribution of soil particles. Aust. J. Appl. Sci., 7, 142-147Google Scholar
  11. Mc Connel ML (1981) Particle size determination by quasielastic light scattering. Anal. Chem., 53, 1007-1018CrossRefGoogle Scholar
  12. Novich BE and Ring TA (1984) Colloid stability of clays using photron correlation spectroscopy. Clays Clay Miner., 32, 400-406CrossRefGoogle Scholar
  13. Oakley DM and Jennings BR (1982) Clay particle sizing by electrically induced birefringence. Clay Miner., 17, 313-325CrossRefGoogle Scholar
  14. Pennington KL and Lewis GC (1979) A comparison of electronic and pipet methods for mechanical analysis of soils. Soil Sci., 28, 280-284CrossRefGoogle Scholar
  15. Rybina VV (1979) Use of conductimetry for the determination of the particle-size composition of soils. Pochvovedeniye, 7, 134-138Google Scholar
  16. Salbu B, Bjornstad HE, Linstrom NS, Lydersen E (1985) Size fractionation techniques in the determination of elements associated with particulate or colloidal material in natural fresh waters. Talanta, 32, 907-913CrossRefGoogle Scholar
  17. Svarovsky L and Allen T (1970) Performance of a new X-Ray sedimentometer. Particle Size Analysis, 147-157Google Scholar
  18. Yang KC and Hogg R (1979) Estimation of particle size distributions from turbidimetric measurements. Anal. Chem., 51, 758-763CrossRefGoogle Scholar
  19. Yonker CR, Jones HK and Robertson DM (1987) Non aqueous sedimentation field flow fractionation. Anal. Chem., 59, 2574-2579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations