Skip to main content

Experimental and Pharmacokinetic Studies in Intraperitoneal Chemotherapy: From Laboratory Bench to Bedside

  • Chapter
Book cover Advances in Peritoneal Surface Oncology

Part of the book series: Resent Results in Cancer Research ((RECENTCANCER,volume 169))

Abstract

Extrapolation of experimental results to clinical practice should be done very carefully, because of the differences between the conditions on the laboratory bench and those in the human body. In the clinical setting, circumstances are much more complicated and drug activity is moderated by many physiological factors. On the other hand, the possibility of creating standardized conditions may be of great help for interpretation of treatment efficacy since great inter-individual differences may encumber this process. Furthermore, experimental studies provide indicative information that may be very valuable since it is practically impossible to study each treatment parameter in comparative clinical studies. The relatively small number of patients available for intraperitoneal chemotherapy trials complicates clinical evaluation of optimal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts DS, Young L, Mason N, Salmon SE (1985) In vitro evaluation of anticancer drugs against ovarian cancer at concentrations achieved by intraperitoneal administration. Semin Oncol 3[Suppl 4]:38–42

    Google Scholar 

  • Alberts DS, Surwit EA, Peng YM et al. (1988) Phase I clinical and pharmacokinetic study of mitoxantrone given to patients by intraperitoneal administration. Cancer Res 48:5874–5877

    CAS  PubMed  Google Scholar 

  • Atallah D, Marsaud V, Radanyi C et al. (2004) Thermal enhancement of oxaliplatin-induced inhibition of cell proliferation and cell cycle progression in human carcinoma cell lines. Int J Hyperthermia 20:405–419

    CAS  PubMed  Google Scholar 

  • Baba H, Siddik ZH, Strebel FR et al. (1989) Increased therapeutic gain of combined cis-diamminedichlor oplatinum(II) and whole body hyperthermia therapy by optimal heat/drug scheduling. Cancer Res 49:7041–7044

    CAS  PubMed  Google Scholar 

  • Balthasar JP, Fung H-L (1996) Inverse targeting of peritoneal tumors: selective alteration of the disposition of methotrexate through the use of anti-methotrexate antibodies and antibody fragments. J Pharm Sci 85:1035–1043

    CAS  PubMed  Google Scholar 

  • Barlogie B, Corry PM, Drewinko B. In vitro thermochemotherapy of human colon cancer cells with cis-dic hlordiammineplatinum(II) and Mitomycin C. Cancer Res 40:1165–1168

    Google Scholar 

  • Bartlett DL, Buell JF, Libutti SK et al. (1998) A phase I trial of continuous hyperthermic peritoneal perfusion with tumor necrosis factor and cisplatin in the treatment of peritoneal carcinomatosis. Cancer 83:1251–1261

    CAS  PubMed  Google Scholar 

  • Blochl-Daum B, Eichler HG, Rainer H et al. (1988) Escalating dose regimen of intraperitoneal mitoxantrone: phase I study — clinical and pharmacokinetic evaluation. Eur J Cancer Clin Oncol 24:1133–1138

    CAS  PubMed  Google Scholar 

  • van Bree C, Rietbroek R, Schopman EM et al. (1996a) Local hyperthermia enhances the effect of cis-diamminedichloro-platinum(II) on non-irradiated and pre-irradiated rat solid tumors. Int J Radiat Oncol Biol Phys 36:135–140

    PubMed  Google Scholar 

  • van Bree C, Schopman EM, Bakker PJ et al. (1996b) Local hyperthermic treatment does not enhance mitoxantrone effectiveness for responses of a rat model tumour regrowing after irradiation. J Cancer Res Clin Oncol 122:147–153

    PubMed  Google Scholar 

  • van Bree C, Beumer C, Rodermond HM et al. (1999) Effectiveness of 2′,2′difluorodeoxycytidine (Gemcitabine) combined with hyperthermia in rat R-1 rhabdomyosarcoma in vitro and in vivo. Int J Hyperthermia 15:549–556

    PubMed  Google Scholar 

  • van Bree C, Savoneije JH, Franken NA et al. (2000) The effect of p53-function on the sensitivity to paclitaxel with or without hyperthermia in human colorectal carcinoma cells. Int J Oncol 16:739–744

    PubMed  Google Scholar 

  • de Bree E, Rosing H, Beijnen JH et al. (2003) Pharmacokinetic study of docetaxel in intraoperative hyperthermic i.p. chemotherapy for ovarian cancer. Anti-Cancer Drugs 14:103–110

    PubMed  Google Scholar 

  • de Bree E, Rosing H, Michalakis J et al. (2006a) Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur J Surg Oncol (in press)

    Google Scholar 

  • de Bree E, Theodoropoulos PA, Rosing H et al. (2006b) Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: From laboratory bench to bedside. Cancer Treat Rev (in press)

    Google Scholar 

  • Buell JF, Reed E, Lee KB et al. (1997) Synergistic effect and possible mechanisms of tumor necrosis factor and cisplatin cytotoxicity under moderate hyperthermia against gastric cancer cells. Ann Surg Oncol 4:141–148

    CAS  PubMed  Google Scholar 

  • Camora E, Esposito M, Civalleri D et al. (1987) Serum, urine and peritoneal fluid levels of 5-FU following intraperitoneal administration. Anticancer Res 7:829–832

    Google Scholar 

  • Canal P, de Forni M, Chatelut E et al. (1989) Clinical and pharmacokinetic study of intraperitoneal cisplatin at two dose levels: 100 mg/m2 alone or 200 mg/m2 with i.v. thiosulfate. Acta Med Austriaca 16:84–86

    CAS  PubMed  Google Scholar 

  • Chang E, Alexander HR, Libutti SK et al. (2001) Laparoscopic continuous hyperthermic peritoneal perfusion. J Am Coll Surg 193:225–229

    CAS  PubMed  Google Scholar 

  • Chatelut E, Suh P, Kim S (1994) Sustained-release methotrexate for intracavitary chemotherapy. J Pharm Sci 83:429–432

    CAS  PubMed  Google Scholar 

  • Cho HK, Lush RM, Bartlett DL et al. (1999) Pharmacokinetics of cisplatin administered by continuous hyperthermic peritoneal perfusion (CHPP) to patients with peritoneal carcinomatosis. J Clin Pharmacol 39:394–401

    CAS  PubMed  Google Scholar 

  • Choi EK, Park SR, Lee JH et al. (2003) Induction of apoptosis by carboplatin and hyperthermia alone or combined in WERI human retinoblastoma cells. Int J Hyperthermia 19:431–443

    CAS  PubMed  Google Scholar 

  • Civalleri D, Vannozzi MO, DeCian F et al. (2002) Intraperitoneal mitoxantrone: a feasibility and pharmacokinetic study. Eur J Surg Oncol 28:172–179

    CAS  PubMed  Google Scholar 

  • Cividalli A, Cruciani G, Livdi E et al. (1999) Hyperthermia enhances the response of paclitaxel and radiation in a mouse adenocarcinoma. Int J Radiat Oncol Biol Phys 44:407–412

    CAS  PubMed  Google Scholar 

  • Cividalli A, Livdi E, Ceciarelli F et al. (2000) Hyperthermia and paclitaxel-epirubicin chemotherapy: enhanced cytotoxic effect in a murine mammary adenocarcinoma. Int J Hyperthermia 16:61–71

    CAS  PubMed  Google Scholar 

  • Cohen JD, Robins HI, Schmitt CL (1989) Tumoricidal interactions of hyperthermia with carboplatin, cisplatin and etoposide. Cancer Lett 44:205–210

    CAS  PubMed  Google Scholar 

  • Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas — with a report of ten original cases. Am J Med Sci 105:487–511

    Google Scholar 

  • Dahl O (1983) Hyperthermic potentiation of doxorubicin and 4′-epi-doxorubicin in a transplantable neurogenic rat tumor (BT4A) in BD IX rats. Int J Radiat Oncol Biol Phys 9:203–207

    CAS  PubMed  Google Scholar 

  • Douple EB, Strohbehn JW, de Sieyes DC et al. (1982) Therapeutic potentiation of cis-dichlorodiamminep latinum(II) and radiation by interstitial microwave hyperthermia in a mouse tumor. Nat Cancer Inst Monogr 61:259–262

    CAS  Google Scholar 

  • Ducreux M, Kohne CH, Schwartz GK, Vanhoefer U (2003) Irinotecan in metastatic colorectal cancer: dose intensification and combination with new agents, including biological response modifiers. Ann Oncol 14[Suppl 2]:ii17–ii23

    PubMed  Google Scholar 

  • Dumontet C, Bodin F, Michal Y (1998) Potential interactions between antitubulin agents and temperature: implications for modulation of multidrug resistance. Clin Cancer Res 4:1563–1566

    CAS  PubMed  Google Scholar 

  • Elias D, Bonnay M, Puizillou JM et al. (2002) Heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol 13:267–272

    CAS  PubMed  Google Scholar 

  • Elias DM, Sideris L (2003) Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am 12:755–769

    PubMed  Google Scholar 

  • Elias D, Matsuhisa T, Sideris L et al. (2004) Heated intraoperative intraperitoneal oxaliplatin plus irinotecan after complete resection of peritoneal carcinomatosis: pharmacokinetics, tissue distribution and tolerance. Ann Oncol 1558–1565

    Google Scholar 

  • Francis P, Rowinsky E, Schneider J et al. (1995) Phase I feasibility and pharmacologic study of weekly paclitaxel: a Gynecologic Oncology Group pilot study. J Clin Oncol 13:2961–2967

    CAS  PubMed  Google Scholar 

  • Fujimoto S, Shresta RD, Kokubum M et al. (1989) Pharmacokinetic analysis of mitomycin C for intraperitoneal hyperthermic perfusion in patients with faradvanced or recurrent gastric cancer. Reg Cancer Treat 2:198–202

    Google Scholar 

  • Furukawa T, Kumai K, Kubota T et al. Experimental and clinical studies on the intraperitoneal administration of cis-diamminedichloroplatinum (II) for peritoneal carcinomatosis caused by gastric cancers. Surg Today 23:298–306

    Google Scholar 

  • Fushida S, Furui N, Kinami S et al. (2002a) [Pharmacologic study of intraperitoneal paclitaxel in gastric cancer with peritoneal dissemination]. Gan To Kagaku Ryoho 29:2164–2167

    PubMed  Google Scholar 

  • Fushida S, Nao F, Kinami S et al. (2002b) [Pharmacologic study of intraperitoneal docetaxel in gastric cancer with peritoneal dissemination]. Gan To Kagaku Ryoho 29:1759–1763

    PubMed  Google Scholar 

  • Garcia AA, Mugia FM, Spears CP et al. (2001) Phase I and pharmacological study of i.v. hydroxyurea infusion given with i.p. 5-fluoro-2′-deoxyuridine and leucovorin. Anticancer Drugs 12:505–511

    CAS  PubMed  Google Scholar 

  • Gelderblom H, Verweij J, van Zomeren DM et al. (2002) Influence of Cremophor EL on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res 8:1237–1241

    CAS  PubMed  Google Scholar 

  • Glehen O, Stuart OA, Mohamed F, Sugarbaker PH (2004) Hyperthermia modifies pharmacokinetics and tissue distribution of intraperitoneal melphalan in a rat model. Cancer Chemother Pharmacol 54:79–84

    CAS  PubMed  Google Scholar 

  • Goel R, Cleary SM, Horton C et al. (1989) selective intraperitoneal biochemical modulation of methotrexate by dipyridamole. J Clin Oncol 7:262–269

    CAS  PubMed  Google Scholar 

  • Guichard S, Chatelut E, Lochon I et al. (1998) Comparison of the pharmacokinetics and efficacy of irinotecan after administration by the intravenous versus intraperitoneal route in mice. Cancer Chemother Pharmacol 42:165–170

    CAS  PubMed  Google Scholar 

  • Haas GP, Klugo RC, Hetzel FW et al. (1984) The synergistic effect of hyperthermia and chemotherapy on murine transitional cell carcinoma. J Urol 132:828–833

    CAS  PubMed  Google Scholar 

  • Hagiwara A, Takahashi T, Ueda T et al. (1988) Intraoperative chemotherapy with carbon particles absorbing mitomycin C for gastric cancer with peritoneal dissemination in rabbits. Surgery 104:874–881

    CAS  PubMed  Google Scholar 

  • Hagiwara A, Takahashi T, Kojima O et al. (1992) Prophylaxis with carbon-absorbed mitomycin against recurrence of gastric cancer. Lancet 339:629–631

    CAS  PubMed  Google Scholar 

  • Hagiwara A, Takahashi T, Kojima O et al. (1993a) Pharmacologic effects of cisplatin microspheres on peritoneal carcinomatosis in rodents. Cancer 71:844–850

    CAS  PubMed  Google Scholar 

  • Hagiwara A, Takahashi T, Sawai K et al. (1993b) Clinical trials with intraperitoneal cisplatin microspheres for malignant ascites — a pilot study. Anticancer Drug Des 8:463–470

    CAS  PubMed  Google Scholar 

  • Hagiwara A, Takahashi T, Sawai K et al. (1996) Pharmacological effects of 5-fluorouracil microspheres on peritoneal carcinomatosis in animals. Br J Cancer 74:1392–1396

    CAS  PubMed  Google Scholar 

  • Hahn GM, Braun J, Har-Kedar I (1975) Thermochemotherapy: synergism between hyperthermia (42–43°) and adriamycin (or bleomycin) in mammalian cell inactivation. Proc Natl Acad Sci USA 72:937–940

    CAS  PubMed  Google Scholar 

  • Hahn GM, Strande DP (1976) Cytotoxic effects of hyperthermia and adriamycin on Chinese hamster cells. J Natl Cancer Inst 57:1063–1067

    CAS  PubMed  Google Scholar 

  • Harada S, Ping L, Obara T et al. (1995) The antitumor effect of hyperthermia combined with fluorouracil and its analogues. Radiat Res 142:232–241

    CAS  PubMed  Google Scholar 

  • Haveman J, Rietbroek RC, Geerdink A et al. (1995) effect of hyperthermia on the cytotoxicity of 2′,2′-difluorodeoxycytidine (gemcitabine) in cultured SW1573 cells. Int J Cancer 62:627–630

    CAS  PubMed  Google Scholar 

  • Hazen G, Ben-Hur E, Yerushalmi A (1981) Synergism between hyperthermia and cyclophosphamide in vivo: the effect of dose fractionation. Eur J Cancer 17:681–684

    Google Scholar 

  • van Heek-Romanowski R, Putter S, Trarbach T, Kremens B (2001) Etoposide toxicity on human neuroblastoma cells in vitro is enhanced by preceding hyperthermia. Med Pediatr Oncol 36:197–198

    PubMed  Google Scholar 

  • van der Heijden AG, Verhaegh G, Jansen CFJ et al. (2005) Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study. J Urol 173:1375–1380

    PubMed  Google Scholar 

  • Herman TS, Cress AE, Sweets C, Gerner EW (1981) Reversal of resistance to methotrexate by hyperthermia in Chinese hamster ovary cells. Cancer Res 41:3840–3843

    CAS  PubMed  Google Scholar 

  • Herman TS (1983) Effect of temperature on the cytoxicity of videstine, amsarcina, and mitoxantrone. Cancer Treat Rep 67:1019–1022

    CAS  PubMed  Google Scholar 

  • Herman TS, Teicher BA, Chan V et al. (1988) Effect of hyperthermia on the action of cis-diamminidichloroplatinum (II), Rhodamine 1232 [tetrachloroplatinum (II)], Rhodamine 123, and potassium tetrachloroplatinate in vitro and in vivo. Cancer Res 48:2335–2341

    CAS  PubMed  Google Scholar 

  • Hermisson M, Weller M (2000) Hyperthermia enhanced chemosensitivity of human malignant glioma cells. Anticancer Res 20:1819–1823

    CAS  PubMed  Google Scholar 

  • Hofstra LS, Bos AM, Vries EG et al. (2001) A phase I and pharmacokinetic study of intraperitoneal topotecan. Br J Cancer 85:1627–1633

    CAS  PubMed  Google Scholar 

  • Honess DJ, Bleehen NM (1982) Sensitivity on normal mouse marrow and RIF-1 tumor to hyperthermia combined with cyclophosphamide or BCNU: a lack of therapeutic gain. Br J Cancer 46:236–248

    CAS  PubMed  Google Scholar 

  • Honess DJ, Bleehen NM (1985) Thermochemotherapy with cisplatinum, CCNU, BCNU, clorambucil and melphalan on murine marrow and two tumours: therapeutic gain for melphalan only. Br J Radiol 58:63–72

    CAS  PubMed  Google Scholar 

  • Houghton PJ, Stewart CF, Zamboni WC et al. (1996) Schedule-dependent efficacy of camptothecins in models of human cancer. Ann NY Acad Sci 803:188–201

    CAS  PubMed  Google Scholar 

  • Howell SB, Pfeifle CL, Wung WE et al. (1982) Intraperitoneal cisplatin with systemic thiosulfate protection. Ann Intern Med 97:845–851

    CAS  PubMed  Google Scholar 

  • Howell SB, Pfeifle CE, Olshen RA (1984) Intraperitoneal chemotherapy with melphalan. Ann Intern Med 101:14–18

    CAS  PubMed  Google Scholar 

  • Howell SB, Hom DK, Sanga R et al. (1989) Dipyridamole enhancement of etoposide sensitivity. Cancer Res 49:3178–3183

    CAS  PubMed  Google Scholar 

  • Hribaschek A, Pross M, Kuhn R et al. (2002) Prevention and treatment of peritoneal carcinomatosis in experimental investigations with CPT-11 and oxaliplatin. Anti-Cancer Drugs 13:605–614

    CAS  PubMed  Google Scholar 

  • Hribaschek A, Kuhn R, Pross M et al. (2006) Intraperitoneal versus intravenous CPT-11 given intra-and postoperatively for peritoneal carcinomatosis in a rat model. Surg Today 36:57–62

    CAS  PubMed  Google Scholar 

  • Inoue K, Onishi H, Kato Y et al. (2004) Comparison of intraperitoneal continuous infusion of Floxuridine and bolus administration in a peritoneal gastric cancer xenograft model. Cancer Chemother Pharmacol 53:415–422

    CAS  PubMed  Google Scholar 

  • Innocenti F, Danesi R, Di Paolo A et al. (1995) Plasma and tissue disposition of paclitaxel (taxol) after intraperitoneal administration in mice. Drug Metab Dispos 23:713–717

    CAS  PubMed  Google Scholar 

  • Israel VK, Jiang C, Muggia FM et al. (1995) Intraperitoneal 5-fluoro-2′-deoxyuridine (FUDR) and (S)-leucovorin for disease predominantly confined to the peritoneal cavity: a pharmacokinetic and toxicity study. Cancer Chemother Pharmacol 37:32–38

    CAS  PubMed  Google Scholar 

  • Isonishi S, Kirmani S, Kim S et al. (1991) Phase I and pharmacokinetic trial of intraperitoneal etoposide in combination with the multi-drug-resistancemodulating agent dipyridamole. J Natl Cancer Inst 83:621–626

    CAS  PubMed  Google Scholar 

  • Jacquet P, Averbach A, Stuart OA et al. (1998a) Hyperthermic intraperitoneal doxorubicin: pharmacokinetics, metabolism, and tissue distribution in a rat model. Cancer Chemother Pharmacol 41:147–154

    CAS  PubMed  Google Scholar 

  • Jacquet P, Averbach A, Stephens AD et al. (1998b) Heated intraoperative intraperitoneal mitomycin C and early postoperative intraperitoneal 5-fluorouracil: pharmacokinetic studies. Oncology 55:130–138

    CAS  PubMed  Google Scholar 

  • Jakobsen A, Berglund A, Glimelius B et al. (2002) Dose-effect relationship of bolus 5-fluorouracil in the treatment of advanced colorectal cancer. Acta Oncol 41:525–531

    CAS  PubMed  Google Scholar 

  • Jameela SR, Latha PG, Subramoniam A, Jayakrishnan A (1996) Antitumour activity of mitoxantrone-loaded chitosan microspheres against Ehrlich carcinoma. J Pharm Pharmacol 48:658–688

    Google Scholar 

  • Juvekar AS, Chitnis MP, Adwankar MK, Advani SH (1986) Effect of mitoxantrone on human chronic myeloid leukemia cells in vitro, combined with hyperthermia. Neoplasma 33:477–482

    CAS  PubMed  Google Scholar 

  • Katschinski DM, Robins HI (1999) Hyperthermic modulation of SN-38 induced topoisomerase 1 DNA cross-linking and SN-38 cytotoxicity through altered topoisomerase I activity. Int J Cancer 80:104–109

    CAS  PubMed  Google Scholar 

  • Kerr DJ, Young AM, Neoptolemos JP et al. (1996) Prolonged intraperitoneal infusion of 5-fluoruracil using a novel carrier solution. Br J Cancer 74:2032–2035

    CAS  PubMed  Google Scholar 

  • Knox JD, Mitchel RE, Brown DL (1993) Effects of taxol and taxol/hyperthermia treatments on the functional polarization of cytotoxic T lymphocytes. Cell Motil Cytoskeleton 24:129–138

    CAS  PubMed  Google Scholar 

  • Kohn EC, Sarosy G, Bicher A et al. (1994) Dose-intense taxol: high response rate in patients with platinumresistant recurrent ovarian cancer. J Natl Cancer Inst 86:18–24

    CAS  PubMed  Google Scholar 

  • Kondo T, Ueda K, Kano E (1995) Combined effects of hyperthermia and CPT-11 on DNA strand breaks in mouse mammary carcinoma FM3A cells. Anticancer Res 15:83–86

    CAS  PubMed  Google Scholar 

  • Kosmidis PA, Uzunoglou N, Elemenoglou J, Kottaridis S (1988) Combination of hyperthermia and methotrexate in the treatment of transplanted Walker sarcoma. Chemioterapia 7:184–188

    CAS  PubMed  Google Scholar 

  • Kuh H-J, Jang S, Wientjes JM et al. (1999) Determinants of paclitaxel penetration and accumulation in human solid tumor. J Pharmacol Exper Ther 290:871–880

    CAS  Google Scholar 

  • Kuroda M, Urano M, Reynolds R (1997) Thermal enhancement of the effect of ifosfamide against a spontaneous murine fibrosarcoma, FSa-II. Int J Hyperthermia 13:125–131

    CAS  PubMed  Google Scholar 

  • Kusumoto T, Holden SA, Ara G, Teicher BA (1995) Hyperthermia and platinum complexes: time between treatments and synergy in vitro and in vivo. Int J Hyperthermia 11:575–586

    CAS  PubMed  Google Scholar 

  • Kutz ME, Mulkerin DL, Wiedemann GJ et al. (1997) In vitro studies of the hyperthermic enhancement of activated ifosfamide (4-hydroperoxy-ifofamide) and glucose isophosphoramide mustard. Cancer Chemother Pharmacol 40: 167–171

    CAS  PubMed  Google Scholar 

  • Kuzuya T, Yamauchi M, Ito A et al. (1994) Pharmacokinetic characteristics of 5-fluorouracil and mitomycin C in intraperitoneal chemotherapy. J Pharm Pharmacol 46:685–689

    CAS  PubMed  Google Scholar 

  • Leal BZ, Meltz ML, Mohan N, Kuhn J, Prihoda TJ, Herman TS (1999) Interaction of hyperthermia with Taxol in human MCF-7 breast adenocarcinoma cells. Int J Hyperthermia 15:225–236

    CAS  PubMed  Google Scholar 

  • Lee JS, Takahashi T, Hagiwara A et al. (1995) Safety and efficacy of intraperitoneal injection of etoposide in oil suspension in mice with peritoneal carcinomatosis. Cancer Chemother Pharmacol 36:211–216

    CAS  PubMed  Google Scholar 

  • de Lima Vazquez V, Stuart OA, Mohamed F, Sugarbaker PH (2003) Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics. Cancer Chemother Pharmacol 52:108–112

    PubMed  Google Scholar 

  • Lindegaard J, Radacic M, Khalil AA et al. (1992) Cisplatin and hyperthermia treatment of a CH3 mammary carcinoma in vivo. Acta Oncol 31:347–351

    CAS  PubMed  Google Scholar 

  • Lindner P, Heath DD, Shalinsky DR et al. (1993) regional lymphatic drug exposure following intraperitoneal administration of 5-fluorouracil, carboplatin, and etoposide. Surg Oncol 2:105–112

    CAS  PubMed  Google Scholar 

  • Lindner P, Heath DD, Howell SB et al. (1996) Vasopressin modulation of peritoneal, lymphatic, and plasma drug exposure following intraperitoneal administration. Clin Cancer Res 2:311–317

    CAS  PubMed  Google Scholar 

  • Link KH, Leder G, Pillasch J et al. (1998) In vitro concentration response studies and in vitro phase II tests as the experimental basis for regional chemotherapeutic protocols. Semin Surg Oncol 14:189–201

    CAS  PubMed  Google Scholar 

  • Link KH, Roitman M, Holtappels M et al. (2003) Intraperitoneal chemotherapy with mitoxantrone in malignant ascites. Surg Oncol Clin N Am 12:865–872

    CAS  PubMed  Google Scholar 

  • Lobo ED, Balthasar JP (2003) Pharmacokinetic-pharmacodynamic modelling of methotrexate-induced toxicity in mice. J Pharm Sci 92:1654–1664

    CAS  PubMed  Google Scholar 

  • Lobo ED, Soda DM, Balthasar JP (2003) Application of pharmacokinetic-pharmacodynamic modelling to predict the kinetic and dynamic effects of anti-methotrexate antibodies in mice. J Pharm Sci 92:1665–1672

    CAS  PubMed  Google Scholar 

  • Lobo ED, Balthasar JP (2005) Application of anti-methotrexate Fab fragments for the optimization of intraperitoneal methotrexate therapy in a murine model of peritoneal cancer. J Pharm Sci 94:1957–1964

    CAS  PubMed  Google Scholar 

  • Los G, Mutsaerts PH, Lenglet WJ et al. (1990a) Platinum distribution in intraperitoneal tumors after intraperitoneal cisplatin treatment. Cancer Chemother Pharmacol 25:389–394

    CAS  PubMed  Google Scholar 

  • Los G, Mutsaerts PH, Ruevekamp M, McVie JG (1990b) The use of oxaliplatin versus cisplatin in intraperitoneal chemotherapy in cancers restricted to the peritoneal cavity in the rat. Cancer Lett 51:109–117

    CAS  PubMed  Google Scholar 

  • Los G, Verdegaal EM, Mutsaers PH, McVie JG (1991a) Penetration of carboplatin and cisplatin into rat peritoneal tumor nodules after intraperitoneal chemotherapy. Cancer Chemother Pharmacol 28:159–165

    CAS  PubMed  Google Scholar 

  • Los G, Sminia P, Wondergem J et al. (1991b) Optimisation of intraperitoneal cisplatin therapy with regional hyperthermia in rats. Eur J Cancer 27:472–477

    CAS  PubMed  Google Scholar 

  • Los G, van Vugt MJH, den Engelse L, Pinedo HM (1993) Effects of temperature on the interaction of cisplatin and carboplatin with cellular DNA. Biochem Pharmacol 46:1229–1237

    CAS  PubMed  Google Scholar 

  • Los G, van Vugt MJH, Pinedo HM (1994) Response of peritoneal solid tumours after intraperitoneal chemohyperthermia treatment with cisplatin and carboplatin. Br J Cancer 69:235–241

    CAS  PubMed  Google Scholar 

  • Luftensteiner CP, Schwendenwein I, Paul B et al. (1999) Evaluation of mitoxantrone-loaded albumin microspheres following intraperitoneal administration to rats. J Control Release 57:35–44

    CAS  PubMed  Google Scholar 

  • Ma GY, Bartlett DL, Reed E et al. (1997) Continuous hyperthermic peritoneal perfusion with cisplatin for the treatment of peritoneal mesothelioma. Cancer J Sci Am 3:174–179

    CAS  PubMed  Google Scholar 

  • Maehera Y, Sakaguchi Y, Takahashi I et al. (1992) 5-Fluorouracil’s cytotoxicity is enhanced both in vitro and in vivo by concomitant treatment with hyperthermia and dipyridamole. Cancer Chemother Pharmacol 29:257–260

    Google Scholar 

  • Maeta M, Sawata T, Kaibara N (1993) Effects of hyperthermia on the metabolism of 5-fluorouracil in vitro. Int J Hyperthermia 9:105–113

    CAS  PubMed  Google Scholar 

  • Mahteme H, Larsson B, Sundin A et al. (2004) Uptake of 5-fluorouracil (5-FU) in peritoneal metastases in relation to the route of drug administration and tumour debulking surgery. An autoradiography study in the rat. Eur J Cancer 40:142–147

    CAS  PubMed  Google Scholar 

  • Marchetti P, Stuart OA, Mohamed F et al. (2002) Docetaxel: pharmacokinetics and tissue levels after intraperitoneal and intravenous administration in a rat model. Cancer Chemother Pharmacol 49:499–503

    Google Scholar 

  • Markman M, Cleary S, Howell SB (1985) Nephrotoxicity of high-dose intracavitary cisplatin with intravenous thiosulphate protection. Eur J Cancer Clin Oncol 21:1015–1018

    CAS  PubMed  Google Scholar 

  • Markman M, Rowinsky E, Hakes T et al. (1992) Phase I trial of intraperitoneal taxol: a Gynecologic Oncology Group study. J Clin Oncol 10:1485–1491

    CAS  PubMed  Google Scholar 

  • Markman M (1996) Intraperitoneal Taxol. Cancer Treat Res 81:1–5

    CAS  PubMed  Google Scholar 

  • Maruyama M, Nagahama T, Yuasa Y (1999) Intraperitoneal versus intravenous CPT-11 for peritoneal seeding and liver metastasis. Anticancer Res 19:4187–4191

    CAS  PubMed  Google Scholar 

  • Maskaleris T, Lialiaris T, Triantaphyllidis C (1998) Induction of cytogenetic damage in human lymphocytes in vitro and of antineoplastic effects in Ehrlich ascites tumor cells in vivo treated by methotrexate, hyperthermia and/or caffeine. Mutat Res 422:229–236

    CAS  PubMed  Google Scholar 

  • Matsui A, Okuda M, Tsujitsuka K et al. (2003) Pharmacology of intraperitoneal CPT-11. Surg Oncol Clin N Am 12:795–811

    PubMed  Google Scholar 

  • McClay EF, Goel R, Andrews P et al. (1993) A phase I and pharmacokinetic study on intraperitoneal carboplatin and etoposide. Br J Cancer 68:783–788

    CAS  PubMed  Google Scholar 

  • Mella O (1985) Combined hyperthermia and cis-diamminedichloroplatinum in BD IX rats with transplanted BT4A tumours. Int J Hyperthermia 1:171–184

    CAS  PubMed  Google Scholar 

  • Michalakis J, Georgatos SD, Romanos J et al. (2005) Micromolar taxol, with or without hyperthermia, induces mitotic catastrophe and cell necrosis in HeLa cells. Cancer Chemother Pharmacol 56:615–622

    CAS  PubMed  Google Scholar 

  • Michalakis J, Georgatos SD, de Bree E et al. (2006) Short term exposure of cancer cells to micromolar doses of paclitaxel, with or without hyperthermia, induces long term inhibition of cell proliferation and cell death in vitro. Ann Surg Oncol (in press)

    Google Scholar 

  • Mini E, Dombrowski J, Moroson BA, Bertino JR (1986) Cytotoxic effects of hyperthermia, 5-fluorouracil and their combination on a human leukemia T-lymphoblast cell line, CCRF-CEM. Eur J Cancer Clin Oncol 22:927–934

    CAS  PubMed  Google Scholar 

  • Miyagi Y, Fujiwara K, Kigawa J et al. (2005) Intraperitoneal carboplatin infusion may be a pharmacologically more reasonable route than intravenous administration as a systemic chemotherapy. A comparative pharmacokinetic analysis of platinum using a new mathematical model after intraperitoneal vs. intravenous infusion of carboplatin — a Sankai Gynecology Study Group (SGSG) study. Gynecol Oncol 99:591–596

    CAS  PubMed  Google Scholar 

  • Mohamed F, Sugarbaker PH (2003a) Intraperitoneal taxanes. Surg Oncol Clin N Am 12: 825–833

    PubMed  Google Scholar 

  • Mohamed F, Marchettini P, Stuart OA et al. (2003a) Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann Surg Oncol 10:463–468

    PubMed  Google Scholar 

  • Mohamed F, Marchettini P, Stuart OA, Sugarbaker PH (2003b) Pharmacokinetics and tissue distribution of intraperitoneal docetaxel with different carrier solutions. J Surg Res 113:114–120

    CAS  PubMed  Google Scholar 

  • Mohamed F, Marchettini P, Stuart OA et al. (2003c) A comparison of hetastarch and peritoneal dialysis solution for intraperitoneal chemotherapy delivery. Eur J Surg Oncol 29:261–265

    CAS  PubMed  Google Scholar 

  • Mohamed F, Marchetti P, Stuart OA, Sugarbaker PH (2003d) Pharmacokinetics and tissue distribution of intraperitoneal paclitaxel with different carrier solutions. Cancer Chemother Pharmacol 52:405–410

    CAS  PubMed  Google Scholar 

  • Mohamed F, Stuart OA, Glehen O et al. (2004) Docetaxel and hyperthermia: factors that modify thermal enhancement. J Surg Oncol 88:14–20

    CAS  PubMed  Google Scholar 

  • Monge OR, Rofstad EK, Kaalhus O (1988) Thermochemotherapy in vivo of a C3H mouse mammary carcinoma: single fraction heat and drug treatment. Eur J Cancer Clin Oncol 24:1661–1669

    CAS  PubMed  Google Scholar 

  • Morgan RJ, Doroshow JH, Synold T et al. (2003) Phase I trial of intraperitoneal docetaxel in the treatment of advanced malignancies primarily confined to the peritoneal cavity. Clin Cancer Res 9:5896–5901

    CAS  PubMed  Google Scholar 

  • Muggia FM, Chan KK, Russell C et al. (1991) Phase/I and pharmacological evaluation of intraperitoneal 5-fluoro-2′-deoxyuridine. Cancer Chemother Pharmacol 28:241

    CAS  PubMed  Google Scholar 

  • Murray TG, Cicciarelli N, McCabe CM et al. (1997) In vitro efficacy of carboplatin and hyperthermia in a murine retinoblastoma cell line. Invest Ophtahalmol Vis Sci 38:2516–2522

    CAS  Google Scholar 

  • Nagaoka S, Kawasaki S, Sasaki K, Nakanishi T (1986) Intracellular uptake, retention and cytotoxic effect of adriamycin combined with hyperthermia in vitro. Jpn J Cancer Res 77:205–211

    CAS  PubMed  Google Scholar 

  • Nagel JD, Varossieau FJ, Dubbelman R et al. (1992) Clinical pharmacokinetics of mitoxantrone after intraperitoneal administration. Cancer Chemother Pharmacol 29:480–484

    CAS  PubMed  Google Scholar 

  • Nicoletto MO, Padrini R, Galeotti F et al. (2000) Pharmacokinetics of intraperitoneal hyperthermic perfusion with mitoxantrone in ovarian cancer. Cancer Chemother Pharmacol 45:457–462

    CAS  PubMed  Google Scholar 

  • Ning S, Macleod K, Abra RM et al. (1994) Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys 29:827–834

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Ono K, Hiraoka M et al. (1990) Treatment of murine SCC VII tumors with localized hyperthermia and temperature-sensitive liposomes containing cisplatin. Radiat Res 122:161–167

    CAS  PubMed  Google Scholar 

  • O’Dwyer PJ, LaCreta F, Hogan M et al. (1991a) Pharmacokinetic study of etoposide and cisplatin by the intraperitoneal route. J Clin Pharmacol 31:253–258

    PubMed  Google Scholar 

  • O’Dwyer PJ, LaCreta F, Daugherty JP et al. (1991b) Phase I pharmacokinetic study of intraperitoneal etoposide. Cancer Res 51:2041–2046

    PubMed  Google Scholar 

  • Ohashi N, Kodera Y, Nakanishi H et al. (2005) Efficacy of intraperitoneal chemotherapy with paclitaxel targeting peritoneal micrometastases as revealed by GFP-tagged human gastric cancer cell lines in nude mice. Int J Oncol 27:637–644

    CAS  PubMed  Google Scholar 

  • Ohnoshi T, Ohnuma T, Beranek JT, Holland JF (1985) Combined cytotoxicity effect of hyperthermia and anthracycline antibiotics on human tumor cells. J Natl Cancer Inst 74:275–281

    CAS  PubMed  Google Scholar 

  • Omura GA, Brady MF, Look KY et al. (2003) Phase III trial of paclitaxel at two dose levels, the higher dose accompanied by filgrastim at two dose levels in platinum-pretreated epithelial ovarian cancer: an Intergroup study. J Clin Oncol 21:2843–2848

    CAS  PubMed  Google Scholar 

  • Osborne EJ, MacKillop WJ (1987) The effect of exposure to elevated temperatures on membrane permeability to adriamycin in Chinese hamster ovary cells in vitro. Cancer Lett 37:213–224

    CAS  PubMed  Google Scholar 

  • Othman T, Goto S, Lee JB, Taimura A et al. (2001) Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology 62:208–212

    CAS  PubMed  Google Scholar 

  • Overgaard J (1976) Combined adriamycin and hyperthermia treatment of a murine mammary carcinoma in vivo. Cancer Res 36:3077–3081

    CAS  PubMed  Google Scholar 

  • Ozols RF, Young RC, Speyer JL et al. (1982) Phase I and pharmacological studies of adriamycin administered intraperitoneally to patients with ovarian cancer. Cancer Res 42:4265–4269

    CAS  PubMed  Google Scholar 

  • Ozols RF, Locker GY, Doroshow JH et al. (1979) Pharmacokinetics of adriamycin and tissue penetration in murine ovarian cancer. Cancer Res 39:3209–3214

    CAS  PubMed  Google Scholar 

  • Pantazis P, Han Z, Wyche J (1999) Schedule-dependent efficiency of thermochemotherapy in vitro with etoposide and heating at 43 degree C. Anticancer Res 19:995–998

    CAS  PubMed  Google Scholar 

  • Panteix G, Guillaumont M, Cherpin L et al. (1993) Study of the pharmacokinetics of mitomycin C in humans during intraperitoneal chemohyperthermia with special mention of the concentration in local tissues. Oncology 50:366–370

    CAS  PubMed  Google Scholar 

  • Pestieau SR, Stuart OA, Chang D et al. (1998) Pharmacokinetics of intraperitoneal gemcitabine in a rat model. Tumori 84:706–711

    CAS  PubMed  Google Scholar 

  • Pestieau SR, Belliveau JF, Griffin H et al. (2001) Pharmacokinetics of intraperitoneal oxaliplatin: experimental studies. J Surg Oncol 76:106–114

    CAS  PubMed  Google Scholar 

  • Piccart MJ, Abrams J, Dodion PF et al. (1988) Intraperitoneal chemotherapy with cisplatin and melphalan. J Natl Cancer Inst 80:1118–1124

    CAS  PubMed  Google Scholar 

  • Reed E, Bitton R, Sarosy G, Kohn E (1996) Paclitaxel dose intensity. J Infus Chemother 6:59–63

    CAS  PubMed  Google Scholar 

  • Ridwelski K, Meyer F, Hribaschek A et al. (2002) Intraoperative and early postoperative chemotherapy into the abdominal cavity using gemcitabine may prevent postoperative occurrence of peritoneal carcinomatosis. J Surg Oncol 79:10–16

    CAS  PubMed  Google Scholar 

  • Rietbroek RC, van der Vaart PJ, Haveman J et al. (1997a) Hyperthermia enhances the cytotoxicity and platinum-DNA adduct formation of lobaplatin and oxaliplatin in cultured SW 1573 cells. J Cancer Res Clin Oncol 123:6–12

    CAS  PubMed  Google Scholar 

  • Rietbroek RC, Katschinski DM, Reijers MH et al. (1997b) Lack of thermal enhancement for taxanes in vitro. Int J Hyperthermia 13:525–533

    CAS  PubMed  Google Scholar 

  • Rose WC, Veras GH, Laster WR, Schabel FM Jr (1979) Evaluation of whole-body hyperthermia as an adjunct to chemotherapy in murine tumors. Cancer Treat Rep 63:1311–1325

    CAS  PubMed  Google Scholar 

  • Rossi C, Foletto M, Mocellin S et al. (2002) Hyperthermic intraoperative intraperitoneal chemotherapy with cisplatin and doxorubicin in patients who undergo cytoreductive surgery for carcinomatosis and sarcomatosis. Cancer 94:492–499

    CAS  PubMed  Google Scholar 

  • Rotstein LE, Daly J, Rozsa P (1983) Systemic thermochemotherapy in a rat model. Can J Surg 26:113–116

    CAS  PubMed  Google Scholar 

  • Rowinsky EK (1997) The taxanes: dosing and schedule considerations. Oncology 11:7–19

    CAS  PubMed  Google Scholar 

  • Royer B, Guardiola E, Polycarpe E et al. (2005) Serum and intraperitoneal pharmacokinetics of cisplatin within intraoperative intraperitoneal chemotherapy: influence of protein binding. Anti-Cancer Drugs 16:1009–1016

    CAS  PubMed  Google Scholar 

  • Ruiz van Haperen VW, Veerman G, Vermorken JB, Peters GJ (1993) 2′,2′-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem Pharmacol 46:762–766

    CAS  PubMed  Google Scholar 

  • van Ruth S, Verwaal VJ, Zoetmulder FAN (2003b) Pharmacokinetics of intraperitoneal mitomycin C. Surg Oncol Clin N Am 12:771–780

    PubMed  Google Scholar 

  • Sabbatini P, Aghajanian C, Leitao M et al. (2004) Intraperitoneal cisplatin with intraperitoneal gemcitabine in patients with epithelial ovarian cancer: results of a phase I/II trial. Clin Cancer Res 10:2962–2967

    CAS  PubMed  Google Scholar 

  • Sakaguchi Y, Maehera Y, Emi Y et al. (1992) Adriamycin combined with hyperthermia and dipyridamole is cytotoxic both in vitro and in vivo. Eur Surg Res 24:249–256

    CAS  PubMed  Google Scholar 

  • Schem BC, Mella O, Dahl O (1992) Thermochemotherapy with cisplatin or carboplatin in the BT4 rat glioma in vitro and in vivo. Int J Radiat Biol Phys 23:109–114

    CAS  Google Scholar 

  • Schilsky RL, Choi KE, Grimmer D et al. (1990) Phase I clinical and pharmacologic study of intraperitoneal cisplatin and fluorouracil in patients with advanced intraabdominal cancer. J Clin Oncol 8:2054–2061

    CAS  PubMed  Google Scholar 

  • Schopman EM, van Bree C, Kipp JB, Barendsen GW (1995) Enhancement of the effectiveness of methotrexate for the treatment of solid tumours by application of local hyperthermia. Int J Hyperthermia 11:561–573

    CAS  PubMed  Google Scholar 

  • Schopman EM, van Bree C, Bakker PJ et al. (1996) Hyperthermia-enhanced effectiveness of mitoxantrone in an experimental rat model. Int J Hyperthermia 12:241–254

    CAS  PubMed  Google Scholar 

  • Sharma D, Chelvi TP, Kaur J, Ralhan R (1998) Thermosensitive liposomal taxol formulation: heat-mediated targeted drug delivery in murine melanoma. Melanoma Res 8:240–244

    CAS  PubMed  Google Scholar 

  • Shimada T, Nomura M, Yokogawa K et al. (2005) Pharmacokinetic advantage of intraperitoneal injection of docetaxel in the treatment for peritoneal dissemination of cancer in mice. J Pharm Pharmacol 57:177–181

    CAS  PubMed  Google Scholar 

  • Sparreboom A, van Zuylen L, Brouwer E et al. (1999) CremophorEL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59:1454–1457

    CAS  PubMed  Google Scholar 

  • Speyer JL, Sugarbaker PH, Collins JM et al. (1981) Portal levels and hepatic clearance of 5-fluorouracil after intraperitoneal administration in humans. Cancer Res 41:1916–1922

    CAS  PubMed  Google Scholar 

  • Stojkovic R, Radacic M (2002) Cell killing of melanoma B16 in vivo by hyperthermia and cytotoxins. Int J Hyperthermia 18:62–71

    CAS  PubMed  Google Scholar 

  • Storm FK (1989) Clinical hyperthermia and chemotherapy. Radiol Clin N Am 27:621–627

    CAS  PubMed  Google Scholar 

  • Sugarbaker PH, Graves T, DeBruijn EA et al. (1990) Early postoperative intraperitoneal chemotherapy as an adjuvant therapy to surgery for peritoneal carcinomastosis from gastrointestinal cancer: pharmacological studies. Cancer Res 50:5790–5794

    CAS  PubMed  Google Scholar 

  • Sugarbaker PH, Sweatman TW, Graves T et al. (1991) Early postoperative intraperitoneal adriamycin. Pharmacological studies and preliminary clinical report. Reg Cancer Treat 4:127–131

    Google Scholar 

  • Sugarbaker PH, Torres Mora J, Carmignani P et al. (2005) Update on chemotherapeutic agents utilized for perioperative intraperitoneal chemotherapy. Oncologist 10:112–122

    CAS  PubMed  Google Scholar 

  • Takemoto M, Kuroda M, Urano M et al. (2003) The effect of various chemotherapeutic agents given at mild hyperthermia on different types of tumours. Int J Hyperthermia 19:193–203

    CAS  PubMed  Google Scholar 

  • Takimoto CH, Rowinsky EK (2003) Dose-intense paclitaxel: déjà vu all over again? J Clin Oncol 21:2810–2814

    CAS  PubMed  Google Scholar 

  • Teicher BA, Holden SA, Khanadakar V, Herman TS (1993) Addition of topoisomerase I inhibitor to trimodality therapy [cis-diamminedichloroplatinum(I I)/heat/radiation] in a murine tumor. J Cancer Res Clin Oncol 119:645–651

    CAS  PubMed  Google Scholar 

  • Urano M, Begley J, Reynolds R (1994) Interaction between adriamycin cytotoxicity and hyperthermia: growth-phase-dependent thermal sensitization. Int J Hyperthermia 10:817–826

    CAS  PubMed  Google Scholar 

  • Urano M, Kim M, Kahn J et al. (1985) Effect of thermochemotherapy (combined cyclophosphamide and hyperthermia) given at various temperatures with or without glucose administration on a murine fibrosarcoma. Cancer Res 45:4162–4166

    CAS  PubMed  Google Scholar 

  • Urano M, Kahn J, Kenton LA (1990) The effect of cisd iamminedichloroplatinum(II) treatment at elevated temperatures on murine fibrosarcoma, FSa-II. Int J Hyperthermia 6:563–570

    CAS  PubMed  Google Scholar 

  • Urano M, Kahn J, Reynolds R (1991) The effect of 5-fluorouracil at elevated temperatures on a spontaneous mouse tumour: Arrhenius analysis and tumour response. Int J Radiat Biol 59:239–249

    CAS  PubMed  Google Scholar 

  • Urano M, Wong K-H, Reynolds R, Begley J (1995) The advantageous use of hypoxic tumor cells in cancer therapy: identical chemosensitization by metronidazole and misonidazole at moderately elevated temperatures. Int J Hyperthermia 11:379–388

    CAS  PubMed  Google Scholar 

  • Urano M, Kuroda M, Nishimura Y (1999) For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 15:79–107

    CAS  PubMed  Google Scholar 

  • Urano M, Ling CC (2002) Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int J Hyperthermia 18:307–315

    CAS  PubMed  Google Scholar 

  • van der Vaart PJM, van der Vange N, Zoetmulder FAN et al. (1998) Intraperitoneal cisplatin with regional hyperthermia in advanced ovarian cancer: pharmokinetics and cisplatin-DNA adduct formation in patients and ovarian cancer cell lines. Eur J Cancer 34:148–154

    PubMed  Google Scholar 

  • Vertrees RA, Das GC, Popov VL et al. PJ (2005) Synergistic interaction of hyperthermia and gemcitabine in lung cancer. Cancer Biol Ther 4:1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Wang BS, Lumanglas AL, Silva J et al. (1987) Cancer Treat Rep 71:831–836

    CAS  PubMed  Google Scholar 

  • Wiedemann G, Mella O, Roszinski S et al. (1992) Hyperthermia enhances mitoxantrone cytotoxicity on human breast carcinoma and sarcoma xenografts in nude mice. Int J Radiat Oncol Biol Phys 24:669–673

    CAS  PubMed  Google Scholar 

  • Wientjes MG, Dalton JT, Badalament RA et al. (1991) Bladder wall penetration of intravesical mitomycin C in dogs. Cancer Res 51:4347–4354

    CAS  PubMed  Google Scholar 

  • Wolff SN, Grosh WW, Prater K, Hande KR (1987) In vitro pharmacodynamic evaluation of VP-16-213 and implications for chemotherapy. Cancer Chemother Pharmacol 19:246–249

    CAS  PubMed  Google Scholar 

  • Xu MJ, Alberts DS (1988) Potentiation of platinum analogue cytotoxicity by hyperthermia. Cancer Chemother Pharmacol 21:191–196

    CAS  PubMed  Google Scholar 

  • Yokogawa K, Jin M, Furui N et al. (2004) Disposition kinetics of taxanes after intraperitoneal administration in rats and influence of surfactant vehicles. J Pharm Pharmacol 56:629–634

    CAS  PubMed  Google Scholar 

  • Yonemura Y, Endou Y, Bando E et al. (2004) Effect of intraperitoneal administration of docetaxel on peritoneal dissemination of gastric cancer. Cancer Lett 210:189–196

    CAS  PubMed  Google Scholar 

  • Zakris EL, Dewhirst MW, Riviere JE et al. (1987) Pharmacokinetics and toxicity of intraperitoneal cisplatin combined with regional hyperthermia. J Clin Oncol 5:1613–1620

    CAS  PubMed  Google Scholar 

  • Zeamari S, Floot B, van der Vange N, Stewart FA (2003) Pharmacokinetics and pharmacodynamics of cisplatin after intraoperative hyperthermic intraperitoneal chemoperfusion (HIPEC). Anticancer Res 23:1643–1648

    CAS  PubMed  Google Scholar 

  • Zimm S, Cleary SM, Lucas WE et al. (1987) Phase I/pharmacokinetic study of intraperitoneal cisplatin and etoposide. Cancer Res 47:1712–1716

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Bree, E., Tsiftsis, D.D. (2007). Experimental and Pharmacokinetic Studies in Intraperitoneal Chemotherapy: From Laboratory Bench to Bedside. In: González-Moreno, S. (eds) Advances in Peritoneal Surface Oncology. Resent Results in Cancer Research, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30760-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30760-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30759-4

  • Online ISBN: 978-3-540-30760-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics