Advertisement

On the Security Notions for Public-Key Encryption Schemes

  • Duong Hieu Phan
  • David Pointcheval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3352)

Abstract

In this paper, we revisit the security notions for public-key encryption, and namely indistinguishability. We indeed achieve the surprising result that no decryption query before receiving the challenge ciphertext can be replaced by queries (whatever the number is) after having received the challenge, and vice-versa. This remark leads to a stricter and more complex hierarchy for security notions in the public-key setting: the (i,j)-IND level, in which an adversary can ask at most i (j resp.) queries before (after resp.) receiving the challenge. Excepted the trivial implications, all the other relations are strict gaps, with no polynomial reduction (under the assumption that IND-CCA2 secure encryption schemes exist.) Similarly, we define different levels for non-malleability (denoted (i,j)-NM.)

Keywords

Encryption Scheme Attack Model Security Notion Oracle Access Challenge Ciphertext 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES Modes of Operation. In: Proc. of the 38th FOCS. IEEE, New York (1997)Google Scholar
  2. 2.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Security for Public-key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures – How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions, and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Berlin (1999)Google Scholar
  5. 5.
    Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. In: Proc. of the 23rd STOC. ACM Press, New York (1991)Google Scholar
  6. 6.
    Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33(4), 210–217 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and System Sciences 28, 270–299 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. In: Proc. of the 17th STOC, pp. 291–304. ACM Press, New York (1985)Google Scholar
  10. 10.
    Goldwasser, S., Micali, S., Rivest, R.: A “Paradoxical” Solution to the Signature Problem. In: Proc. of the 25th FOCS, pp. 441–448. IEEE, New York (1984)Google Scholar
  11. 11.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against Adaptative Chosen-Message Attacks. SIAM Journal of Computing 17(2), 281–308 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Naor, M., Yung, M.: Public-Key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: Proc. of the 22nd STOC, pp. 427–437. ACM Press, New York (1990)Google Scholar
  13. 13.
    Ohta, K., Okamoto, T.: On Concrete Security Treatment of Signatures Derived from Identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Berlin (1998)Google Scholar
  14. 14.
    Phan, D.H., Pointcheval, D.: On the Security Notions for Public-Key Encryption Schemes. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 33–46. Springer, Berlin (2004), Full version available from, http://www.di.ens.fr/users/pointche/ Google Scholar
  15. 15.
    Rackoff, C., Simon, D.R.: Non-interactive Zero-knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  16. 16.
    Sahai, A.: Non-Malleable Non-Interactive Zero-Knowledge and Chosen-Ciphertext Security. In: Proc. of the 40th FOCS. IEEE, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Duong Hieu Phan
    • 1
  • David Pointcheval
    • 1
  1. 1.Dépt d’informatiqueÉcole normale supérieureParis Cedex 05France

Personalised recommendations